Loading…
Statistical Characterization of Time-Dependent Variability Defects Using the Maximum Current Fluctuation
This article presents a new methodology to extract, at a given operation condition, the statistical distribution of the number of active defects that contribute to the observed device time-dependent variability, as well as their amplitude distribution. Unlike traditional approaches based on complex...
Saved in:
Published in: | IEEE transactions on electron devices 2021-08, Vol.68 (8), p.4039-4044 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This article presents a new methodology to extract, at a given operation condition, the statistical distribution of the number of active defects that contribute to the observed device time-dependent variability, as well as their amplitude distribution. Unlike traditional approaches based on complex and time-consuming individual analysis of thousands of current traces, the proposed approach uses a simpler trace processing, since only the maximum and minimum values of the drain current during a given time interval are needed. Moreover, this extraction method can also estimate defects causing small current shifts, which can be very complex to identify by traditional means. Experimental data in a wide range of gate voltages, from near-threshold up to nominal operation conditions, are analyzed with the proposed methodology. |
---|---|
ISSN: | 0018-9383 1557-9646 |
DOI: | 10.1109/TED.2021.3086448 |