Loading…

A Computational Model of Thrombus Growth Based on Level Set Method

The computational model of thrombosis is of great importance that decides the simulation performance. In the present study, a hybrid particle-continuum model with plasma, vascular wall, and thrombus being continuum material and platelets being discrete particles, was developed to simulate the thromb...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.100769-100780
Main Authors: Ma, Chaoqing, Zheng, Qiang, Wang, Juan, Cai, Qing, Li, Honglun, Du, Ruoyu, Tong, Xiangrong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-5fd63386ac817383b4b50b78c04106338fa003dd7b7c1e89013aa9caa5b3d62c3
cites cdi_FETCH-LOGICAL-c408t-5fd63386ac817383b4b50b78c04106338fa003dd7b7c1e89013aa9caa5b3d62c3
container_end_page 100780
container_issue
container_start_page 100769
container_title IEEE access
container_volume 9
creator Ma, Chaoqing
Zheng, Qiang
Wang, Juan
Cai, Qing
Li, Honglun
Du, Ruoyu
Tong, Xiangrong
description The computational model of thrombosis is of great importance that decides the simulation performance. In the present study, a hybrid particle-continuum model with plasma, vascular wall, and thrombus being continuum material and platelets being discrete particles, was developed to simulate the thrombus growth. In the computational model, the thrombus growth was reformulated as a novel continuum surface expansion problem implemented by a level set function due to its capability of effectively handling the topological changes comprising splitting and merging, rather than a traditional particle accumulation problem. Additionally, a Gaussian-based function and distance regularization function, served as speed functions to drive the thrombus growth, were proposed and compared in our study. Experiments demonstrated that the growing thrombus could retain the particle texture of platelets by both level set speed functions, while the distance regularization function performed better in improving computational complexity and surface tracking behaviors. Both simulations demonstrated better visuality in the progress of thrombosis, and the geometry shape of the virtual primary thrombi were similar to the realistic counterpart.
doi_str_mv 10.1109/ACCESS.2021.3091556
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9462096</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9462096</ieee_id><doaj_id>oai_doaj_org_article_bb61c64c978f4ba09743b67f1463e181</doaj_id><sourcerecordid>2553595301</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-5fd63386ac817383b4b50b78c04106338fa003dd7b7c1e89013aa9caa5b3d62c3</originalsourceid><addsrcrecordid>eNpNUEFuwjAQjKpWKqK8gIulnkPtbOzYR4goRQL1AD1btuOUoICpnbTq75s0qOpedjU7M6udKJoSPCMEi6d5ni93u1mCEzIDLAil7CYaJYSJGCiw23_zfTQJ4Yi74h1Es1G0mKPcnS5to5rKnVWNtq6wNXIl2h-8O-k2oJV3X80BLVSwBXJntLGfHWNnG7S1zcEVD9FdqepgJ9c-jt6el_v8Jd68rtb5fBObFPMmpmXBADhThpMMOOhUU6wzbnBKcL8pFcZQFJnODLFcYAJKCaMU1VCwxMA4Wg--hVNHefHVSflv6VQlfwHn36XyTWVqK7VmxLDUiIyXqVZYZClolpUkZWAJJ53X4-B18e6jtaGRR9f67v8gE0qBCgq4Z8HAMt6F4G35d5Vg2Wcvh-xln728Zt-ppoOqstb-KUTKEiwY_AA153z_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2553595301</pqid></control><display><type>article</type><title>A Computational Model of Thrombus Growth Based on Level Set Method</title><source>IEEE Xplore Open Access Journals</source><creator>Ma, Chaoqing ; Zheng, Qiang ; Wang, Juan ; Cai, Qing ; Li, Honglun ; Du, Ruoyu ; Tong, Xiangrong</creator><creatorcontrib>Ma, Chaoqing ; Zheng, Qiang ; Wang, Juan ; Cai, Qing ; Li, Honglun ; Du, Ruoyu ; Tong, Xiangrong</creatorcontrib><description>The computational model of thrombosis is of great importance that decides the simulation performance. In the present study, a hybrid particle-continuum model with plasma, vascular wall, and thrombus being continuum material and platelets being discrete particles, was developed to simulate the thrombus growth. In the computational model, the thrombus growth was reformulated as a novel continuum surface expansion problem implemented by a level set function due to its capability of effectively handling the topological changes comprising splitting and merging, rather than a traditional particle accumulation problem. Additionally, a Gaussian-based function and distance regularization function, served as speed functions to drive the thrombus growth, were proposed and compared in our study. Experiments demonstrated that the growing thrombus could retain the particle texture of platelets by both level set speed functions, while the distance regularization function performed better in improving computational complexity and surface tracking behaviors. Both simulations demonstrated better visuality in the progress of thrombosis, and the geometry shape of the virtual primary thrombi were similar to the realistic counterpart.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3091556</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Biological system modeling ; Blood ; Blood clots ; Blood platelets ; Computational modeling ; Continuum modeling ; Level set ; Mathematical model ; medical simulation ; Platelets ; Regularization ; Simulation ; Thrombosis ; visualization</subject><ispartof>IEEE access, 2021, Vol.9, p.100769-100780</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-5fd63386ac817383b4b50b78c04106338fa003dd7b7c1e89013aa9caa5b3d62c3</citedby><cites>FETCH-LOGICAL-c408t-5fd63386ac817383b4b50b78c04106338fa003dd7b7c1e89013aa9caa5b3d62c3</cites><orcidid>0000-0002-9780-3410 ; 0000-0003-4855-3723 ; 0000-0002-7853-8033</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9462096$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,4010,27610,27900,27901,27902,54908</link.rule.ids></links><search><creatorcontrib>Ma, Chaoqing</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Cai, Qing</creatorcontrib><creatorcontrib>Li, Honglun</creatorcontrib><creatorcontrib>Du, Ruoyu</creatorcontrib><creatorcontrib>Tong, Xiangrong</creatorcontrib><title>A Computational Model of Thrombus Growth Based on Level Set Method</title><title>IEEE access</title><addtitle>Access</addtitle><description>The computational model of thrombosis is of great importance that decides the simulation performance. In the present study, a hybrid particle-continuum model with plasma, vascular wall, and thrombus being continuum material and platelets being discrete particles, was developed to simulate the thrombus growth. In the computational model, the thrombus growth was reformulated as a novel continuum surface expansion problem implemented by a level set function due to its capability of effectively handling the topological changes comprising splitting and merging, rather than a traditional particle accumulation problem. Additionally, a Gaussian-based function and distance regularization function, served as speed functions to drive the thrombus growth, were proposed and compared in our study. Experiments demonstrated that the growing thrombus could retain the particle texture of platelets by both level set speed functions, while the distance regularization function performed better in improving computational complexity and surface tracking behaviors. Both simulations demonstrated better visuality in the progress of thrombosis, and the geometry shape of the virtual primary thrombi were similar to the realistic counterpart.</description><subject>Biological system modeling</subject><subject>Blood</subject><subject>Blood clots</subject><subject>Blood platelets</subject><subject>Computational modeling</subject><subject>Continuum modeling</subject><subject>Level set</subject><subject>Mathematical model</subject><subject>medical simulation</subject><subject>Platelets</subject><subject>Regularization</subject><subject>Simulation</subject><subject>Thrombosis</subject><subject>visualization</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUEFuwjAQjKpWKqK8gIulnkPtbOzYR4goRQL1AD1btuOUoICpnbTq75s0qOpedjU7M6udKJoSPCMEi6d5ni93u1mCEzIDLAil7CYaJYSJGCiw23_zfTQJ4Yi74h1Es1G0mKPcnS5to5rKnVWNtq6wNXIl2h-8O-k2oJV3X80BLVSwBXJntLGfHWNnG7S1zcEVD9FdqepgJ9c-jt6el_v8Jd68rtb5fBObFPMmpmXBADhThpMMOOhUU6wzbnBKcL8pFcZQFJnODLFcYAJKCaMU1VCwxMA4Wg--hVNHefHVSflv6VQlfwHn36XyTWVqK7VmxLDUiIyXqVZYZClolpUkZWAJJ53X4-B18e6jtaGRR9f67v8gE0qBCgq4Z8HAMt6F4G35d5Vg2Wcvh-xln728Zt-ppoOqstb-KUTKEiwY_AA153z_</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ma, Chaoqing</creator><creator>Zheng, Qiang</creator><creator>Wang, Juan</creator><creator>Cai, Qing</creator><creator>Li, Honglun</creator><creator>Du, Ruoyu</creator><creator>Tong, Xiangrong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9780-3410</orcidid><orcidid>https://orcid.org/0000-0003-4855-3723</orcidid><orcidid>https://orcid.org/0000-0002-7853-8033</orcidid></search><sort><creationdate>2021</creationdate><title>A Computational Model of Thrombus Growth Based on Level Set Method</title><author>Ma, Chaoqing ; Zheng, Qiang ; Wang, Juan ; Cai, Qing ; Li, Honglun ; Du, Ruoyu ; Tong, Xiangrong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-5fd63386ac817383b4b50b78c04106338fa003dd7b7c1e89013aa9caa5b3d62c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Biological system modeling</topic><topic>Blood</topic><topic>Blood clots</topic><topic>Blood platelets</topic><topic>Computational modeling</topic><topic>Continuum modeling</topic><topic>Level set</topic><topic>Mathematical model</topic><topic>medical simulation</topic><topic>Platelets</topic><topic>Regularization</topic><topic>Simulation</topic><topic>Thrombosis</topic><topic>visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ma, Chaoqing</creatorcontrib><creatorcontrib>Zheng, Qiang</creatorcontrib><creatorcontrib>Wang, Juan</creatorcontrib><creatorcontrib>Cai, Qing</creatorcontrib><creatorcontrib>Li, Honglun</creatorcontrib><creatorcontrib>Du, Ruoyu</creatorcontrib><creatorcontrib>Tong, Xiangrong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ma, Chaoqing</au><au>Zheng, Qiang</au><au>Wang, Juan</au><au>Cai, Qing</au><au>Li, Honglun</au><au>Du, Ruoyu</au><au>Tong, Xiangrong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Computational Model of Thrombus Growth Based on Level Set Method</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>100769</spage><epage>100780</epage><pages>100769-100780</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The computational model of thrombosis is of great importance that decides the simulation performance. In the present study, a hybrid particle-continuum model with plasma, vascular wall, and thrombus being continuum material and platelets being discrete particles, was developed to simulate the thrombus growth. In the computational model, the thrombus growth was reformulated as a novel continuum surface expansion problem implemented by a level set function due to its capability of effectively handling the topological changes comprising splitting and merging, rather than a traditional particle accumulation problem. Additionally, a Gaussian-based function and distance regularization function, served as speed functions to drive the thrombus growth, were proposed and compared in our study. Experiments demonstrated that the growing thrombus could retain the particle texture of platelets by both level set speed functions, while the distance regularization function performed better in improving computational complexity and surface tracking behaviors. Both simulations demonstrated better visuality in the progress of thrombosis, and the geometry shape of the virtual primary thrombi were similar to the realistic counterpart.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3091556</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9780-3410</orcidid><orcidid>https://orcid.org/0000-0003-4855-3723</orcidid><orcidid>https://orcid.org/0000-0002-7853-8033</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.100769-100780
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9462096
source IEEE Xplore Open Access Journals
subjects Biological system modeling
Blood
Blood clots
Blood platelets
Computational modeling
Continuum modeling
Level set
Mathematical model
medical simulation
Platelets
Regularization
Simulation
Thrombosis
visualization
title A Computational Model of Thrombus Growth Based on Level Set Method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T12%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Computational%20Model%20of%20Thrombus%20Growth%20Based%20on%20Level%20Set%20Method&rft.jtitle=IEEE%20access&rft.au=Ma,%20Chaoqing&rft.date=2021&rft.volume=9&rft.spage=100769&rft.epage=100780&rft.pages=100769-100780&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3091556&rft_dat=%3Cproquest_ieee_%3E2553595301%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-5fd63386ac817383b4b50b78c04106338fa003dd7b7c1e89013aa9caa5b3d62c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2553595301&rft_id=info:pmid/&rft_ieee_id=9462096&rfr_iscdi=true