Loading…

AI Development for the Public Interest: From Abstraction Traps to Sociotechnical Risks

Despite interest in communicating ethical problems and social contexts within the undergraduate curriculum to advance Public Interest Technology (PIT) goals, interventions at the graduate level remain largely unexplored. This may be due to the conflicting ways through which distinct Artificial Intel...

Full description

Saved in:
Bibliographic Details
Main Authors: Andrus, McKane, Dean, Sarah, Gilbert, Thomas Krendl, Lambert, Nathan, Zick, Tom
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 79
container_issue
container_start_page 72
container_title
container_volume
creator Andrus, McKane
Dean, Sarah
Gilbert, Thomas Krendl
Lambert, Nathan
Zick, Tom
description Despite interest in communicating ethical problems and social contexts within the undergraduate curriculum to advance Public Interest Technology (PIT) goals, interventions at the graduate level remain largely unexplored. This may be due to the conflicting ways through which distinct Artificial Intelligence (AI) research tracks conceive of their interface with social contexts. In this paper we track the historical emergence of sociotechnical inquiry in three distinct subfields of AI research: AI Safety, Fair Machine Learning (Fair ML) and Human-Inthe-Loop (HIL) Autonomy. We show that for each subfield, perceptions of PIT stem from the particular dangers faced by past integration of technical systems within a normative social order. We further interrogate how these histories dictate the response of each subfield to conceptual traps, as defined in the Science and Technology Studies literature. Finally, through a comparative analysis of these currently siloed fields, we present a roadmap for a unified approach to sociotechnical graduate pedogogy in AI.
doi_str_mv 10.1109/ISTAS50296.2020.9462193
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9462193</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9462193</ieee_id><sourcerecordid>9462193</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-769a316619abaed11ada964ebdcc09be64d7f364d3a7fb297c74a08bff8d22e53</originalsourceid><addsrcrecordid>eNotkN9KwzAcRqMgOGafwAvzAp3516Txrkw3CwPFVW9Hkv7Kol0zkij49g7czXfuDocPoTtKFpQSfd9uu2ZbEablghFGFlpIRjW_QIVWNZWyErQiil6iGaNVXXJB2TUqUvokhLBakErVM_TRtPgRfmAMxwNMGQ8h4rwH_PptR-9wO2WIkPIDXsVwwI1NORqXfZhwF80x4RzwNjgfMrj95J0Z8ZtPX-kGXQ1mTFCcOUfvq6du-VxuXtbtstmUnhGeSyW14adUqo010FNqeqOlANs7R7QFKXo18NNyowbLtHJKGFLbYah7xqDic3T77_UAsDtGfzDxd3d-gv8BtipUAg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>AI Development for the Public Interest: From Abstraction Traps to Sociotechnical Risks</title><source>IEEE Xplore All Conference Series</source><creator>Andrus, McKane ; Dean, Sarah ; Gilbert, Thomas Krendl ; Lambert, Nathan ; Zick, Tom</creator><creatorcontrib>Andrus, McKane ; Dean, Sarah ; Gilbert, Thomas Krendl ; Lambert, Nathan ; Zick, Tom</creatorcontrib><description>Despite interest in communicating ethical problems and social contexts within the undergraduate curriculum to advance Public Interest Technology (PIT) goals, interventions at the graduate level remain largely unexplored. This may be due to the conflicting ways through which distinct Artificial Intelligence (AI) research tracks conceive of their interface with social contexts. In this paper we track the historical emergence of sociotechnical inquiry in three distinct subfields of AI research: AI Safety, Fair Machine Learning (Fair ML) and Human-Inthe-Loop (HIL) Autonomy. We show that for each subfield, perceptions of PIT stem from the particular dangers faced by past integration of technical systems within a normative social order. We further interrogate how these histories dictate the response of each subfield to conceptual traps, as defined in the Science and Technology Studies literature. Finally, through a comparative analysis of these currently siloed fields, we present a roadmap for a unified approach to sociotechnical graduate pedogogy in AI.</description><identifier>EISSN: 2158-3412</identifier><identifier>EISBN: 9781665415071</identifier><identifier>EISBN: 166541507X</identifier><identifier>DOI: 10.1109/ISTAS50296.2020.9462193</identifier><language>eng</language><publisher>IEEE</publisher><subject>Artificial intelligence ; Ethics ; History ; Law ; Machine learning ; Safety</subject><ispartof>2020 IEEE International Symposium on Technology and Society (ISTAS), 2020, p.72-79</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9462193$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9462193$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Andrus, McKane</creatorcontrib><creatorcontrib>Dean, Sarah</creatorcontrib><creatorcontrib>Gilbert, Thomas Krendl</creatorcontrib><creatorcontrib>Lambert, Nathan</creatorcontrib><creatorcontrib>Zick, Tom</creatorcontrib><title>AI Development for the Public Interest: From Abstraction Traps to Sociotechnical Risks</title><title>2020 IEEE International Symposium on Technology and Society (ISTAS)</title><addtitle>ISTAS</addtitle><description>Despite interest in communicating ethical problems and social contexts within the undergraduate curriculum to advance Public Interest Technology (PIT) goals, interventions at the graduate level remain largely unexplored. This may be due to the conflicting ways through which distinct Artificial Intelligence (AI) research tracks conceive of their interface with social contexts. In this paper we track the historical emergence of sociotechnical inquiry in three distinct subfields of AI research: AI Safety, Fair Machine Learning (Fair ML) and Human-Inthe-Loop (HIL) Autonomy. We show that for each subfield, perceptions of PIT stem from the particular dangers faced by past integration of technical systems within a normative social order. We further interrogate how these histories dictate the response of each subfield to conceptual traps, as defined in the Science and Technology Studies literature. Finally, through a comparative analysis of these currently siloed fields, we present a roadmap for a unified approach to sociotechnical graduate pedogogy in AI.</description><subject>Artificial intelligence</subject><subject>Ethics</subject><subject>History</subject><subject>Law</subject><subject>Machine learning</subject><subject>Safety</subject><issn>2158-3412</issn><isbn>9781665415071</isbn><isbn>166541507X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2020</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkN9KwzAcRqMgOGafwAvzAp3516Txrkw3CwPFVW9Hkv7Kol0zkij49g7czXfuDocPoTtKFpQSfd9uu2ZbEablghFGFlpIRjW_QIVWNZWyErQiil6iGaNVXXJB2TUqUvokhLBakErVM_TRtPgRfmAMxwNMGQ8h4rwH_PptR-9wO2WIkPIDXsVwwI1NORqXfZhwF80x4RzwNjgfMrj95J0Z8ZtPX-kGXQ1mTFCcOUfvq6du-VxuXtbtstmUnhGeSyW14adUqo010FNqeqOlANs7R7QFKXo18NNyowbLtHJKGFLbYah7xqDic3T77_UAsDtGfzDxd3d-gv8BtipUAg</recordid><startdate>20201112</startdate><enddate>20201112</enddate><creator>Andrus, McKane</creator><creator>Dean, Sarah</creator><creator>Gilbert, Thomas Krendl</creator><creator>Lambert, Nathan</creator><creator>Zick, Tom</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20201112</creationdate><title>AI Development for the Public Interest: From Abstraction Traps to Sociotechnical Risks</title><author>Andrus, McKane ; Dean, Sarah ; Gilbert, Thomas Krendl ; Lambert, Nathan ; Zick, Tom</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-769a316619abaed11ada964ebdcc09be64d7f364d3a7fb297c74a08bff8d22e53</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2020</creationdate><topic>Artificial intelligence</topic><topic>Ethics</topic><topic>History</topic><topic>Law</topic><topic>Machine learning</topic><topic>Safety</topic><toplevel>online_resources</toplevel><creatorcontrib>Andrus, McKane</creatorcontrib><creatorcontrib>Dean, Sarah</creatorcontrib><creatorcontrib>Gilbert, Thomas Krendl</creatorcontrib><creatorcontrib>Lambert, Nathan</creatorcontrib><creatorcontrib>Zick, Tom</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Andrus, McKane</au><au>Dean, Sarah</au><au>Gilbert, Thomas Krendl</au><au>Lambert, Nathan</au><au>Zick, Tom</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>AI Development for the Public Interest: From Abstraction Traps to Sociotechnical Risks</atitle><btitle>2020 IEEE International Symposium on Technology and Society (ISTAS)</btitle><stitle>ISTAS</stitle><date>2020-11-12</date><risdate>2020</risdate><spage>72</spage><epage>79</epage><pages>72-79</pages><eissn>2158-3412</eissn><eisbn>9781665415071</eisbn><eisbn>166541507X</eisbn><abstract>Despite interest in communicating ethical problems and social contexts within the undergraduate curriculum to advance Public Interest Technology (PIT) goals, interventions at the graduate level remain largely unexplored. This may be due to the conflicting ways through which distinct Artificial Intelligence (AI) research tracks conceive of their interface with social contexts. In this paper we track the historical emergence of sociotechnical inquiry in three distinct subfields of AI research: AI Safety, Fair Machine Learning (Fair ML) and Human-Inthe-Loop (HIL) Autonomy. We show that for each subfield, perceptions of PIT stem from the particular dangers faced by past integration of technical systems within a normative social order. We further interrogate how these histories dictate the response of each subfield to conceptual traps, as defined in the Science and Technology Studies literature. Finally, through a comparative analysis of these currently siloed fields, we present a roadmap for a unified approach to sociotechnical graduate pedogogy in AI.</abstract><pub>IEEE</pub><doi>10.1109/ISTAS50296.2020.9462193</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2158-3412
ispartof 2020 IEEE International Symposium on Technology and Society (ISTAS), 2020, p.72-79
issn 2158-3412
language eng
recordid cdi_ieee_primary_9462193
source IEEE Xplore All Conference Series
subjects Artificial intelligence
Ethics
History
Law
Machine learning
Safety
title AI Development for the Public Interest: From Abstraction Traps to Sociotechnical Risks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T02%3A00%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=AI%20Development%20for%20the%20Public%20Interest:%20From%20Abstraction%20Traps%20to%20Sociotechnical%20Risks&rft.btitle=2020%20IEEE%20International%20Symposium%20on%20Technology%20and%20Society%20(ISTAS)&rft.au=Andrus,%20McKane&rft.date=2020-11-12&rft.spage=72&rft.epage=79&rft.pages=72-79&rft.eissn=2158-3412&rft_id=info:doi/10.1109/ISTAS50296.2020.9462193&rft.eisbn=9781665415071&rft.eisbn_list=166541507X&rft_dat=%3Cieee_CHZPO%3E9462193%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-769a316619abaed11ada964ebdcc09be64d7f364d3a7fb297c74a08bff8d22e53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9462193&rfr_iscdi=true