Loading…

Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors

We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.95391-95400
Main Authors: Olvera, Anuar de Jesus Fernandez, Krause, Benedikt Leander, Betancur-Perez, Andres, Nandi, Uttam, de Dios, Cristina, Acedo, Pablo, Preu, Sascha
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3
cites cdi_FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3
container_end_page 95400
container_issue
container_start_page 95391
container_title IEEE access
container_volume 9
creator Olvera, Anuar de Jesus Fernandez
Krause, Benedikt Leander
Betancur-Perez, Andres
Nandi, Uttam
de Dios, Cristina
Acedo, Pablo
Preu, Sascha
description We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as metrology tool for the analysis of the fundamental resolution and stability limits of terahertz pulses and the mode-locked-lasers (MLLs) that drives them, as well as an ultra-high-resolution measurement technique for terahertz components or gas spectroscopy. We demonstrate both applications by measuring the linewidth of two frequency components of the particular terahertz pulse analyzed here (one at 75 GHz and one at 340 GHz) and by measuring a very narrowband filter between 70 and 80 GHz. The main advantage of this technique with respect to other terahertz pulse detection schemes is its capability of performing ultra-high-resolution measurements without the need of unpractically long scanning ranges or synchronization of two MLLs.
doi_str_mv 10.1109/ACCESS.2021.3094358
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9471854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9471854</ieee_id><doaj_id>oai_doaj_org_article_2cd3714de3ff426abcdcdb1debbea081</doaj_id><sourcerecordid>2551364956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3</originalsourceid><addsrcrecordid>eNpNUU1P4zAQjVastAj4BVwscYFDi8dfcbhFpUAlJJAKZ8uxJ5AqxMVOWbG_HkMQ2rl4_PTeG3teURwDnQPQ6rxeLJbr9ZxRBnNOK8Gl_lXsM1DVjEuu9v7r_xRHKW1oLp0hWe4X_VXE1x0O7p2ssUc3dm9I7rZj-LrEMHSOXIa_gwvDG8bUhYGElljygNE-Yxz_kftdn5A8pm54IstYp4vVcFr3Z9e2TuT-OYwhS_3OjSGmw-J3azP76Ps8KB6vlg-Lm9nt3fVqUd_OnKB6nAkKXKAC8I2VUoNsOKqSKS-00wI1tlAyWVmmXONLr6X1-dOOU0UBS2j5QbGafH2wG7ON3YuN7ybYznwBIT4ZG8fO9WiY87wE4ZG3rWDKNs4734DHpkGbt5S9TiavbQx5UWk0m7CLQ36-YVICV6KSKrP4xHIxpBSx_ZkK1HymZKaUzGdK5julrDqeVB0i_igqUYKWgn8AV2qPCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551364956</pqid></control><display><type>article</type><title>Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors</title><source>IEEE Open Access Journals</source><creator>Olvera, Anuar de Jesus Fernandez ; Krause, Benedikt Leander ; Betancur-Perez, Andres ; Nandi, Uttam ; de Dios, Cristina ; Acedo, Pablo ; Preu, Sascha</creator><creatorcontrib>Olvera, Anuar de Jesus Fernandez ; Krause, Benedikt Leander ; Betancur-Perez, Andres ; Nandi, Uttam ; de Dios, Cristina ; Acedo, Pablo ; Preu, Sascha</creatorcontrib><description>We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as metrology tool for the analysis of the fundamental resolution and stability limits of terahertz pulses and the mode-locked-lasers (MLLs) that drives them, as well as an ultra-high-resolution measurement technique for terahertz components or gas spectroscopy. We demonstrate both applications by measuring the linewidth of two frequency components of the particular terahertz pulse analyzed here (one at 75 GHz and one at 340 GHz) and by measuring a very narrowband filter between 70 and 80 GHz. The main advantage of this technique with respect to other terahertz pulse detection schemes is its capability of performing ultra-high-resolution measurements without the need of unpractically long scanning ranges or synchronization of two MLLs.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3094358</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>CW photoconductive detectors ; ErAs:In(Al)GaAs photoconductors ; Frequency measurement ; frequency metrology ; FreSOD ; High resolution ; Indium gallium arsenides ; Measurement techniques ; Narrowband ; noise in mode-locked lasers ; Optical pulses ; Optical receivers ; Optoelectronics ; Photoconductors ; Principal component analysis ; Pulse measurements ; pulsed terahertz emitters ; Stability analysis ; Synchronism ; Terahertz frequencies ; Timing jitter</subject><ispartof>IEEE access, 2021, Vol.9, p.95391-95400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3</citedby><cites>FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3</cites><orcidid>0000-0001-5474-7407 ; 0000-0002-8053-7363 ; 0000-0002-2188-1981 ; 0000-0003-3966-5133 ; 0000-0002-3026-4707 ; 0000-0003-0818-1865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9471854$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Olvera, Anuar de Jesus Fernandez</creatorcontrib><creatorcontrib>Krause, Benedikt Leander</creatorcontrib><creatorcontrib>Betancur-Perez, Andres</creatorcontrib><creatorcontrib>Nandi, Uttam</creatorcontrib><creatorcontrib>de Dios, Cristina</creatorcontrib><creatorcontrib>Acedo, Pablo</creatorcontrib><creatorcontrib>Preu, Sascha</creatorcontrib><title>Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors</title><title>IEEE access</title><addtitle>Access</addtitle><description>We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as metrology tool for the analysis of the fundamental resolution and stability limits of terahertz pulses and the mode-locked-lasers (MLLs) that drives them, as well as an ultra-high-resolution measurement technique for terahertz components or gas spectroscopy. We demonstrate both applications by measuring the linewidth of two frequency components of the particular terahertz pulse analyzed here (one at 75 GHz and one at 340 GHz) and by measuring a very narrowband filter between 70 and 80 GHz. The main advantage of this technique with respect to other terahertz pulse detection schemes is its capability of performing ultra-high-resolution measurements without the need of unpractically long scanning ranges or synchronization of two MLLs.</description><subject>CW photoconductive detectors</subject><subject>ErAs:In(Al)GaAs photoconductors</subject><subject>Frequency measurement</subject><subject>frequency metrology</subject><subject>FreSOD</subject><subject>High resolution</subject><subject>Indium gallium arsenides</subject><subject>Measurement techniques</subject><subject>Narrowband</subject><subject>noise in mode-locked lasers</subject><subject>Optical pulses</subject><subject>Optical receivers</subject><subject>Optoelectronics</subject><subject>Photoconductors</subject><subject>Principal component analysis</subject><subject>Pulse measurements</subject><subject>pulsed terahertz emitters</subject><subject>Stability analysis</subject><subject>Synchronism</subject><subject>Terahertz frequencies</subject><subject>Timing jitter</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P4zAQjVastAj4BVwscYFDi8dfcbhFpUAlJJAKZ8uxJ5AqxMVOWbG_HkMQ2rl4_PTeG3teURwDnQPQ6rxeLJbr9ZxRBnNOK8Gl_lXsM1DVjEuu9v7r_xRHKW1oLp0hWe4X_VXE1x0O7p2ssUc3dm9I7rZj-LrEMHSOXIa_gwvDG8bUhYGElljygNE-Yxz_kftdn5A8pm54IstYp4vVcFr3Z9e2TuT-OYwhS_3OjSGmw-J3azP76Ps8KB6vlg-Lm9nt3fVqUd_OnKB6nAkKXKAC8I2VUoNsOKqSKS-00wI1tlAyWVmmXONLr6X1-dOOU0UBS2j5QbGafH2wG7ON3YuN7ybYznwBIT4ZG8fO9WiY87wE4ZG3rWDKNs4734DHpkGbt5S9TiavbQx5UWk0m7CLQ36-YVICV6KSKrP4xHIxpBSx_ZkK1HymZKaUzGdK5julrDqeVB0i_igqUYKWgn8AV2qPCA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Olvera, Anuar de Jesus Fernandez</creator><creator>Krause, Benedikt Leander</creator><creator>Betancur-Perez, Andres</creator><creator>Nandi, Uttam</creator><creator>de Dios, Cristina</creator><creator>Acedo, Pablo</creator><creator>Preu, Sascha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5474-7407</orcidid><orcidid>https://orcid.org/0000-0002-8053-7363</orcidid><orcidid>https://orcid.org/0000-0002-2188-1981</orcidid><orcidid>https://orcid.org/0000-0003-3966-5133</orcidid><orcidid>https://orcid.org/0000-0002-3026-4707</orcidid><orcidid>https://orcid.org/0000-0003-0818-1865</orcidid></search><sort><creationdate>2021</creationdate><title>Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors</title><author>Olvera, Anuar de Jesus Fernandez ; Krause, Benedikt Leander ; Betancur-Perez, Andres ; Nandi, Uttam ; de Dios, Cristina ; Acedo, Pablo ; Preu, Sascha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CW photoconductive detectors</topic><topic>ErAs:In(Al)GaAs photoconductors</topic><topic>Frequency measurement</topic><topic>frequency metrology</topic><topic>FreSOD</topic><topic>High resolution</topic><topic>Indium gallium arsenides</topic><topic>Measurement techniques</topic><topic>Narrowband</topic><topic>noise in mode-locked lasers</topic><topic>Optical pulses</topic><topic>Optical receivers</topic><topic>Optoelectronics</topic><topic>Photoconductors</topic><topic>Principal component analysis</topic><topic>Pulse measurements</topic><topic>pulsed terahertz emitters</topic><topic>Stability analysis</topic><topic>Synchronism</topic><topic>Terahertz frequencies</topic><topic>Timing jitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olvera, Anuar de Jesus Fernandez</creatorcontrib><creatorcontrib>Krause, Benedikt Leander</creatorcontrib><creatorcontrib>Betancur-Perez, Andres</creatorcontrib><creatorcontrib>Nandi, Uttam</creatorcontrib><creatorcontrib>de Dios, Cristina</creatorcontrib><creatorcontrib>Acedo, Pablo</creatorcontrib><creatorcontrib>Preu, Sascha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olvera, Anuar de Jesus Fernandez</au><au>Krause, Benedikt Leander</au><au>Betancur-Perez, Andres</au><au>Nandi, Uttam</au><au>de Dios, Cristina</au><au>Acedo, Pablo</au><au>Preu, Sascha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>95391</spage><epage>95400</epage><pages>95391-95400</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as metrology tool for the analysis of the fundamental resolution and stability limits of terahertz pulses and the mode-locked-lasers (MLLs) that drives them, as well as an ultra-high-resolution measurement technique for terahertz components or gas spectroscopy. We demonstrate both applications by measuring the linewidth of two frequency components of the particular terahertz pulse analyzed here (one at 75 GHz and one at 340 GHz) and by measuring a very narrowband filter between 70 and 80 GHz. The main advantage of this technique with respect to other terahertz pulse detection schemes is its capability of performing ultra-high-resolution measurements without the need of unpractically long scanning ranges or synchronization of two MLLs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3094358</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5474-7407</orcidid><orcidid>https://orcid.org/0000-0002-8053-7363</orcidid><orcidid>https://orcid.org/0000-0002-2188-1981</orcidid><orcidid>https://orcid.org/0000-0003-3966-5133</orcidid><orcidid>https://orcid.org/0000-0002-3026-4707</orcidid><orcidid>https://orcid.org/0000-0003-0818-1865</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.95391-95400
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9471854
source IEEE Open Access Journals
subjects CW photoconductive detectors
ErAs:In(Al)GaAs photoconductors
Frequency measurement
frequency metrology
FreSOD
High resolution
Indium gallium arsenides
Measurement techniques
Narrowband
noise in mode-locked lasers
Optical pulses
Optical receivers
Optoelectronics
Photoconductors
Principal component analysis
Pulse measurements
pulsed terahertz emitters
Stability analysis
Synchronism
Terahertz frequencies
Timing jitter
title Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20Selective%20Optoelectronic%20Downconversion%20of%20a%20Terahertz%20Pulse%20Using%20ErAs:In(Al)GaAs%20Photoconductors&rft.jtitle=IEEE%20access&rft.au=Olvera,%20Anuar%20de%20Jesus%20Fernandez&rft.date=2021&rft.volume=9&rft.spage=95391&rft.epage=95400&rft.pages=95391-95400&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3094358&rft_dat=%3Cproquest_ieee_%3E2551364956%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551364956&rft_id=info:pmid/&rft_ieee_id=9471854&rfr_iscdi=true