Loading…
Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors
We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as m...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.95391-95400 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3 |
container_end_page | 95400 |
container_issue | |
container_start_page | 95391 |
container_title | IEEE access |
container_volume | 9 |
creator | Olvera, Anuar de Jesus Fernandez Krause, Benedikt Leander Betancur-Perez, Andres Nandi, Uttam de Dios, Cristina Acedo, Pablo Preu, Sascha |
description | We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as metrology tool for the analysis of the fundamental resolution and stability limits of terahertz pulses and the mode-locked-lasers (MLLs) that drives them, as well as an ultra-high-resolution measurement technique for terahertz components or gas spectroscopy. We demonstrate both applications by measuring the linewidth of two frequency components of the particular terahertz pulse analyzed here (one at 75 GHz and one at 340 GHz) and by measuring a very narrowband filter between 70 and 80 GHz. The main advantage of this technique with respect to other terahertz pulse detection schemes is its capability of performing ultra-high-resolution measurements without the need of unpractically long scanning ranges or synchronization of two MLLs. |
doi_str_mv | 10.1109/ACCESS.2021.3094358 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9471854</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9471854</ieee_id><doaj_id>oai_doaj_org_article_2cd3714de3ff426abcdcdb1debbea081</doaj_id><sourcerecordid>2551364956</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3</originalsourceid><addsrcrecordid>eNpNUU1P4zAQjVastAj4BVwscYFDi8dfcbhFpUAlJJAKZ8uxJ5AqxMVOWbG_HkMQ2rl4_PTeG3teURwDnQPQ6rxeLJbr9ZxRBnNOK8Gl_lXsM1DVjEuu9v7r_xRHKW1oLp0hWe4X_VXE1x0O7p2ssUc3dm9I7rZj-LrEMHSOXIa_gwvDG8bUhYGElljygNE-Yxz_kftdn5A8pm54IstYp4vVcFr3Z9e2TuT-OYwhS_3OjSGmw-J3azP76Ps8KB6vlg-Lm9nt3fVqUd_OnKB6nAkKXKAC8I2VUoNsOKqSKS-00wI1tlAyWVmmXONLr6X1-dOOU0UBS2j5QbGafH2wG7ON3YuN7ybYznwBIT4ZG8fO9WiY87wE4ZG3rWDKNs4734DHpkGbt5S9TiavbQx5UWk0m7CLQ36-YVICV6KSKrP4xHIxpBSx_ZkK1HymZKaUzGdK5julrDqeVB0i_igqUYKWgn8AV2qPCA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551364956</pqid></control><display><type>article</type><title>Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors</title><source>IEEE Open Access Journals</source><creator>Olvera, Anuar de Jesus Fernandez ; Krause, Benedikt Leander ; Betancur-Perez, Andres ; Nandi, Uttam ; de Dios, Cristina ; Acedo, Pablo ; Preu, Sascha</creator><creatorcontrib>Olvera, Anuar de Jesus Fernandez ; Krause, Benedikt Leander ; Betancur-Perez, Andres ; Nandi, Uttam ; de Dios, Cristina ; Acedo, Pablo ; Preu, Sascha</creatorcontrib><description>We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as metrology tool for the analysis of the fundamental resolution and stability limits of terahertz pulses and the mode-locked-lasers (MLLs) that drives them, as well as an ultra-high-resolution measurement technique for terahertz components or gas spectroscopy. We demonstrate both applications by measuring the linewidth of two frequency components of the particular terahertz pulse analyzed here (one at 75 GHz and one at 340 GHz) and by measuring a very narrowband filter between 70 and 80 GHz. The main advantage of this technique with respect to other terahertz pulse detection schemes is its capability of performing ultra-high-resolution measurements without the need of unpractically long scanning ranges or synchronization of two MLLs.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3094358</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>CW photoconductive detectors ; ErAs:In(Al)GaAs photoconductors ; Frequency measurement ; frequency metrology ; FreSOD ; High resolution ; Indium gallium arsenides ; Measurement techniques ; Narrowband ; noise in mode-locked lasers ; Optical pulses ; Optical receivers ; Optoelectronics ; Photoconductors ; Principal component analysis ; Pulse measurements ; pulsed terahertz emitters ; Stability analysis ; Synchronism ; Terahertz frequencies ; Timing jitter</subject><ispartof>IEEE access, 2021, Vol.9, p.95391-95400</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3</citedby><cites>FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3</cites><orcidid>0000-0001-5474-7407 ; 0000-0002-8053-7363 ; 0000-0002-2188-1981 ; 0000-0003-3966-5133 ; 0000-0002-3026-4707 ; 0000-0003-0818-1865</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9471854$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Olvera, Anuar de Jesus Fernandez</creatorcontrib><creatorcontrib>Krause, Benedikt Leander</creatorcontrib><creatorcontrib>Betancur-Perez, Andres</creatorcontrib><creatorcontrib>Nandi, Uttam</creatorcontrib><creatorcontrib>de Dios, Cristina</creatorcontrib><creatorcontrib>Acedo, Pablo</creatorcontrib><creatorcontrib>Preu, Sascha</creatorcontrib><title>Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors</title><title>IEEE access</title><addtitle>Access</addtitle><description>We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as metrology tool for the analysis of the fundamental resolution and stability limits of terahertz pulses and the mode-locked-lasers (MLLs) that drives them, as well as an ultra-high-resolution measurement technique for terahertz components or gas spectroscopy. We demonstrate both applications by measuring the linewidth of two frequency components of the particular terahertz pulse analyzed here (one at 75 GHz and one at 340 GHz) and by measuring a very narrowband filter between 70 and 80 GHz. The main advantage of this technique with respect to other terahertz pulse detection schemes is its capability of performing ultra-high-resolution measurements without the need of unpractically long scanning ranges or synchronization of two MLLs.</description><subject>CW photoconductive detectors</subject><subject>ErAs:In(Al)GaAs photoconductors</subject><subject>Frequency measurement</subject><subject>frequency metrology</subject><subject>FreSOD</subject><subject>High resolution</subject><subject>Indium gallium arsenides</subject><subject>Measurement techniques</subject><subject>Narrowband</subject><subject>noise in mode-locked lasers</subject><subject>Optical pulses</subject><subject>Optical receivers</subject><subject>Optoelectronics</subject><subject>Photoconductors</subject><subject>Principal component analysis</subject><subject>Pulse measurements</subject><subject>pulsed terahertz emitters</subject><subject>Stability analysis</subject><subject>Synchronism</subject><subject>Terahertz frequencies</subject><subject>Timing jitter</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1P4zAQjVastAj4BVwscYFDi8dfcbhFpUAlJJAKZ8uxJ5AqxMVOWbG_HkMQ2rl4_PTeG3teURwDnQPQ6rxeLJbr9ZxRBnNOK8Gl_lXsM1DVjEuu9v7r_xRHKW1oLp0hWe4X_VXE1x0O7p2ssUc3dm9I7rZj-LrEMHSOXIa_gwvDG8bUhYGElljygNE-Yxz_kftdn5A8pm54IstYp4vVcFr3Z9e2TuT-OYwhS_3OjSGmw-J3azP76Ps8KB6vlg-Lm9nt3fVqUd_OnKB6nAkKXKAC8I2VUoNsOKqSKS-00wI1tlAyWVmmXONLr6X1-dOOU0UBS2j5QbGafH2wG7ON3YuN7ybYznwBIT4ZG8fO9WiY87wE4ZG3rWDKNs4734DHpkGbt5S9TiavbQx5UWk0m7CLQ36-YVICV6KSKrP4xHIxpBSx_ZkK1HymZKaUzGdK5julrDqeVB0i_igqUYKWgn8AV2qPCA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Olvera, Anuar de Jesus Fernandez</creator><creator>Krause, Benedikt Leander</creator><creator>Betancur-Perez, Andres</creator><creator>Nandi, Uttam</creator><creator>de Dios, Cristina</creator><creator>Acedo, Pablo</creator><creator>Preu, Sascha</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5474-7407</orcidid><orcidid>https://orcid.org/0000-0002-8053-7363</orcidid><orcidid>https://orcid.org/0000-0002-2188-1981</orcidid><orcidid>https://orcid.org/0000-0003-3966-5133</orcidid><orcidid>https://orcid.org/0000-0002-3026-4707</orcidid><orcidid>https://orcid.org/0000-0003-0818-1865</orcidid></search><sort><creationdate>2021</creationdate><title>Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors</title><author>Olvera, Anuar de Jesus Fernandez ; Krause, Benedikt Leander ; Betancur-Perez, Andres ; Nandi, Uttam ; de Dios, Cristina ; Acedo, Pablo ; Preu, Sascha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CW photoconductive detectors</topic><topic>ErAs:In(Al)GaAs photoconductors</topic><topic>Frequency measurement</topic><topic>frequency metrology</topic><topic>FreSOD</topic><topic>High resolution</topic><topic>Indium gallium arsenides</topic><topic>Measurement techniques</topic><topic>Narrowband</topic><topic>noise in mode-locked lasers</topic><topic>Optical pulses</topic><topic>Optical receivers</topic><topic>Optoelectronics</topic><topic>Photoconductors</topic><topic>Principal component analysis</topic><topic>Pulse measurements</topic><topic>pulsed terahertz emitters</topic><topic>Stability analysis</topic><topic>Synchronism</topic><topic>Terahertz frequencies</topic><topic>Timing jitter</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Olvera, Anuar de Jesus Fernandez</creatorcontrib><creatorcontrib>Krause, Benedikt Leander</creatorcontrib><creatorcontrib>Betancur-Perez, Andres</creatorcontrib><creatorcontrib>Nandi, Uttam</creatorcontrib><creatorcontrib>de Dios, Cristina</creatorcontrib><creatorcontrib>Acedo, Pablo</creatorcontrib><creatorcontrib>Preu, Sascha</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Olvera, Anuar de Jesus Fernandez</au><au>Krause, Benedikt Leander</au><au>Betancur-Perez, Andres</au><au>Nandi, Uttam</au><au>de Dios, Cristina</au><au>Acedo, Pablo</au><au>Preu, Sascha</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>95391</spage><epage>95400</epage><pages>95391-95400</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>We introduce a new scheme for the detection of terahertz pulses based on the frequency selective optoelectronic downconversion of its individual modes with a continous-wave (CW) ErAs:InGaAs photoconductive antenna (PCA) driven by a comb-based CW photonic signal. The detection scheme can be used as metrology tool for the analysis of the fundamental resolution and stability limits of terahertz pulses and the mode-locked-lasers (MLLs) that drives them, as well as an ultra-high-resolution measurement technique for terahertz components or gas spectroscopy. We demonstrate both applications by measuring the linewidth of two frequency components of the particular terahertz pulse analyzed here (one at 75 GHz and one at 340 GHz) and by measuring a very narrowband filter between 70 and 80 GHz. The main advantage of this technique with respect to other terahertz pulse detection schemes is its capability of performing ultra-high-resolution measurements without the need of unpractically long scanning ranges or synchronization of two MLLs.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3094358</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0001-5474-7407</orcidid><orcidid>https://orcid.org/0000-0002-8053-7363</orcidid><orcidid>https://orcid.org/0000-0002-2188-1981</orcidid><orcidid>https://orcid.org/0000-0003-3966-5133</orcidid><orcidid>https://orcid.org/0000-0002-3026-4707</orcidid><orcidid>https://orcid.org/0000-0003-0818-1865</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.95391-95400 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9471854 |
source | IEEE Open Access Journals |
subjects | CW photoconductive detectors ErAs:In(Al)GaAs photoconductors Frequency measurement frequency metrology FreSOD High resolution Indium gallium arsenides Measurement techniques Narrowband noise in mode-locked lasers Optical pulses Optical receivers Optoelectronics Photoconductors Principal component analysis Pulse measurements pulsed terahertz emitters Stability analysis Synchronism Terahertz frequencies Timing jitter |
title | Frequency Selective Optoelectronic Downconversion of a Terahertz Pulse Using ErAs:In(Al)GaAs Photoconductors |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A29%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Frequency%20Selective%20Optoelectronic%20Downconversion%20of%20a%20Terahertz%20Pulse%20Using%20ErAs:In(Al)GaAs%20Photoconductors&rft.jtitle=IEEE%20access&rft.au=Olvera,%20Anuar%20de%20Jesus%20Fernandez&rft.date=2021&rft.volume=9&rft.spage=95391&rft.epage=95400&rft.pages=95391-95400&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3094358&rft_dat=%3Cproquest_ieee_%3E2551364956%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-40134e611dba55815b3e6726d48c84e8ef17259a26cbd7d85ad435c30601e71f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551364956&rft_id=info:pmid/&rft_ieee_id=9471854&rfr_iscdi=true |