Loading…

Extending the Frequency Bandwidth of Transient Stability Simulation Using Dynamic Phasors

This paper presents a novel approach to dynamic phasor-based transient stability simulation. The proposed method is based on the modified nodal analysis (MNA) approach to circuit simulation, which is used to construct continuous differential-algebraic equations (DAEs). The proposed method makes use...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power systems 2022-01, Vol.37 (1), p.249-259
Main Authors: Kulasza, M. A., Annakkage, U. D., Karawita, C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c339t-c5a07c7780b696173e8159f53ebbfcd701accf189b607f9af95fb010374ebaa13
cites cdi_FETCH-LOGICAL-c339t-c5a07c7780b696173e8159f53ebbfcd701accf189b607f9af95fb010374ebaa13
container_end_page 259
container_issue 1
container_start_page 249
container_title IEEE transactions on power systems
container_volume 37
creator Kulasza, M. A.
Annakkage, U. D.
Karawita, C.
description This paper presents a novel approach to dynamic phasor-based transient stability simulation. The proposed method is based on the modified nodal analysis (MNA) approach to circuit simulation, which is used to construct continuous differential-algebraic equations (DAEs). The proposed method makes use of the stamp technique, which makes it possible to construct a general purpose MNA-based simulator. Stamp-based models for common power system components are derived in this work. A new MNA-based synchronous machine model is presented, which represents machines as nonlinear inductances instead of subtransient equivalents. The resultant continuous DAEs are numerically solved using the general purpose variable step and variable order library IDA. Simulation results from the IEEE 68 bus test system, a real 400 bus power system, and the IEEE 39 bus test system with an embedded HVdc transmission system demonstrate that the proposed method is suitable for large ac networks with power electronic devices. The results demonstrate good agreement between the proposed method and electromagnetic transient (EMT) simulation. The results also demonstrate that the proposed method is fast and scalable with CPU times that are up to 200 times faster than EMT simulation.
doi_str_mv 10.1109/TPWRS.2021.3094451
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9473020</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9473020</ieee_id><sourcerecordid>2612470571</sourcerecordid><originalsourceid>FETCH-LOGICAL-c339t-c5a07c7780b696173e8159f53ebbfcd701accf189b607f9af95fb010374ebaa13</originalsourceid><addsrcrecordid>eNo9kMFOAjEQhhujiYi-gF6aeF6cbrfb7VER1IREIhDjadMtrZRAF9sS3bd3V4inOcz__TP5ELomMCAExN18-v42G6SQkgEFkWWMnKAeYaxIIOfiFPWgKFhSCAbn6CKENQDk7aKHPkY_UbuldZ84rjQee_211041-EG65bddxhWuDZ576YLVLuJZlJXd2Njgmd3uNzLa2uFF6PjHxsmtVXi6kqH24RKdGbkJ-uo4-2gxHs2Hz8nk9elleD9JFKUiJopJ4IrzAqpc5IRTXRAmDKO6qoxaciBSKUMKUeXAjZBGMFMBAcozXUlJaB_dHnp3vm5_D7Fc13vv2pNlmpM048B4l0oPKeXrELw25c7brfRNSaDsFJZ_CstOYXlU2EI3B8hqrf8BkXEKKdBfVcduXQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612470571</pqid></control><display><type>article</type><title>Extending the Frequency Bandwidth of Transient Stability Simulation Using Dynamic Phasors</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Kulasza, M. A. ; Annakkage, U. D. ; Karawita, C.</creator><creatorcontrib>Kulasza, M. A. ; Annakkage, U. D. ; Karawita, C.</creatorcontrib><description>This paper presents a novel approach to dynamic phasor-based transient stability simulation. The proposed method is based on the modified nodal analysis (MNA) approach to circuit simulation, which is used to construct continuous differential-algebraic equations (DAEs). The proposed method makes use of the stamp technique, which makes it possible to construct a general purpose MNA-based simulator. Stamp-based models for common power system components are derived in this work. A new MNA-based synchronous machine model is presented, which represents machines as nonlinear inductances instead of subtransient equivalents. The resultant continuous DAEs are numerically solved using the general purpose variable step and variable order library IDA. Simulation results from the IEEE 68 bus test system, a real 400 bus power system, and the IEEE 39 bus test system with an embedded HVdc transmission system demonstrate that the proposed method is suitable for large ac networks with power electronic devices. The results demonstrate good agreement between the proposed method and electromagnetic transient (EMT) simulation. The results also demonstrate that the proposed method is fast and scalable with CPU times that are up to 200 times faster than EMT simulation.</description><identifier>ISSN: 0885-8950</identifier><identifier>EISSN: 1558-0679</identifier><identifier>DOI: 10.1109/TPWRS.2021.3094451</identifier><identifier>CODEN: ITPSEG</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Circuits ; Computational modeling ; Differential equations ; Dynamic phasors ; Dynamic stability ; Electronic devices ; Mathematical model ; modified nodal analysis ; Numerical models ; Numerical stability ; Phasors ; Power system dynamics ; power system simulation ; Power system stability ; power system transient stability ; Simulation ; Stability analysis ; Synchronous machines ; Test systems ; Transient analysis ; Transient stability</subject><ispartof>IEEE transactions on power systems, 2022-01, Vol.37 (1), p.249-259</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c339t-c5a07c7780b696173e8159f53ebbfcd701accf189b607f9af95fb010374ebaa13</citedby><cites>FETCH-LOGICAL-c339t-c5a07c7780b696173e8159f53ebbfcd701accf189b607f9af95fb010374ebaa13</cites><orcidid>0000-0003-1373-0590 ; 0000-0002-1361-6694</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9473020$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Kulasza, M. A.</creatorcontrib><creatorcontrib>Annakkage, U. D.</creatorcontrib><creatorcontrib>Karawita, C.</creatorcontrib><title>Extending the Frequency Bandwidth of Transient Stability Simulation Using Dynamic Phasors</title><title>IEEE transactions on power systems</title><addtitle>TPWRS</addtitle><description>This paper presents a novel approach to dynamic phasor-based transient stability simulation. The proposed method is based on the modified nodal analysis (MNA) approach to circuit simulation, which is used to construct continuous differential-algebraic equations (DAEs). The proposed method makes use of the stamp technique, which makes it possible to construct a general purpose MNA-based simulator. Stamp-based models for common power system components are derived in this work. A new MNA-based synchronous machine model is presented, which represents machines as nonlinear inductances instead of subtransient equivalents. The resultant continuous DAEs are numerically solved using the general purpose variable step and variable order library IDA. Simulation results from the IEEE 68 bus test system, a real 400 bus power system, and the IEEE 39 bus test system with an embedded HVdc transmission system demonstrate that the proposed method is suitable for large ac networks with power electronic devices. The results demonstrate good agreement between the proposed method and electromagnetic transient (EMT) simulation. The results also demonstrate that the proposed method is fast and scalable with CPU times that are up to 200 times faster than EMT simulation.</description><subject>Circuits</subject><subject>Computational modeling</subject><subject>Differential equations</subject><subject>Dynamic phasors</subject><subject>Dynamic stability</subject><subject>Electronic devices</subject><subject>Mathematical model</subject><subject>modified nodal analysis</subject><subject>Numerical models</subject><subject>Numerical stability</subject><subject>Phasors</subject><subject>Power system dynamics</subject><subject>power system simulation</subject><subject>Power system stability</subject><subject>power system transient stability</subject><subject>Simulation</subject><subject>Stability analysis</subject><subject>Synchronous machines</subject><subject>Test systems</subject><subject>Transient analysis</subject><subject>Transient stability</subject><issn>0885-8950</issn><issn>1558-0679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kMFOAjEQhhujiYi-gF6aeF6cbrfb7VER1IREIhDjadMtrZRAF9sS3bd3V4inOcz__TP5ELomMCAExN18-v42G6SQkgEFkWWMnKAeYaxIIOfiFPWgKFhSCAbn6CKENQDk7aKHPkY_UbuldZ84rjQee_211041-EG65bddxhWuDZ576YLVLuJZlJXd2Njgmd3uNzLa2uFF6PjHxsmtVXi6kqH24RKdGbkJ-uo4-2gxHs2Hz8nk9elleD9JFKUiJopJ4IrzAqpc5IRTXRAmDKO6qoxaciBSKUMKUeXAjZBGMFMBAcozXUlJaB_dHnp3vm5_D7Fc13vv2pNlmpM048B4l0oPKeXrELw25c7brfRNSaDsFJZ_CstOYXlU2EI3B8hqrf8BkXEKKdBfVcduXQ</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Kulasza, M. A.</creator><creator>Annakkage, U. D.</creator><creator>Karawita, C.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1373-0590</orcidid><orcidid>https://orcid.org/0000-0002-1361-6694</orcidid></search><sort><creationdate>202201</creationdate><title>Extending the Frequency Bandwidth of Transient Stability Simulation Using Dynamic Phasors</title><author>Kulasza, M. A. ; Annakkage, U. D. ; Karawita, C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c339t-c5a07c7780b696173e8159f53ebbfcd701accf189b607f9af95fb010374ebaa13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Circuits</topic><topic>Computational modeling</topic><topic>Differential equations</topic><topic>Dynamic phasors</topic><topic>Dynamic stability</topic><topic>Electronic devices</topic><topic>Mathematical model</topic><topic>modified nodal analysis</topic><topic>Numerical models</topic><topic>Numerical stability</topic><topic>Phasors</topic><topic>Power system dynamics</topic><topic>power system simulation</topic><topic>Power system stability</topic><topic>power system transient stability</topic><topic>Simulation</topic><topic>Stability analysis</topic><topic>Synchronous machines</topic><topic>Test systems</topic><topic>Transient analysis</topic><topic>Transient stability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kulasza, M. A.</creatorcontrib><creatorcontrib>Annakkage, U. D.</creatorcontrib><creatorcontrib>Karawita, C.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore / Electronic Library Online (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kulasza, M. A.</au><au>Annakkage, U. D.</au><au>Karawita, C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Extending the Frequency Bandwidth of Transient Stability Simulation Using Dynamic Phasors</atitle><jtitle>IEEE transactions on power systems</jtitle><stitle>TPWRS</stitle><date>2022-01</date><risdate>2022</risdate><volume>37</volume><issue>1</issue><spage>249</spage><epage>259</epage><pages>249-259</pages><issn>0885-8950</issn><eissn>1558-0679</eissn><coden>ITPSEG</coden><abstract>This paper presents a novel approach to dynamic phasor-based transient stability simulation. The proposed method is based on the modified nodal analysis (MNA) approach to circuit simulation, which is used to construct continuous differential-algebraic equations (DAEs). The proposed method makes use of the stamp technique, which makes it possible to construct a general purpose MNA-based simulator. Stamp-based models for common power system components are derived in this work. A new MNA-based synchronous machine model is presented, which represents machines as nonlinear inductances instead of subtransient equivalents. The resultant continuous DAEs are numerically solved using the general purpose variable step and variable order library IDA. Simulation results from the IEEE 68 bus test system, a real 400 bus power system, and the IEEE 39 bus test system with an embedded HVdc transmission system demonstrate that the proposed method is suitable for large ac networks with power electronic devices. The results demonstrate good agreement between the proposed method and electromagnetic transient (EMT) simulation. The results also demonstrate that the proposed method is fast and scalable with CPU times that are up to 200 times faster than EMT simulation.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPWRS.2021.3094451</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1373-0590</orcidid><orcidid>https://orcid.org/0000-0002-1361-6694</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0885-8950
ispartof IEEE transactions on power systems, 2022-01, Vol.37 (1), p.249-259
issn 0885-8950
1558-0679
language eng
recordid cdi_ieee_primary_9473020
source IEEE Electronic Library (IEL) Journals
subjects Circuits
Computational modeling
Differential equations
Dynamic phasors
Dynamic stability
Electronic devices
Mathematical model
modified nodal analysis
Numerical models
Numerical stability
Phasors
Power system dynamics
power system simulation
Power system stability
power system transient stability
Simulation
Stability analysis
Synchronous machines
Test systems
Transient analysis
Transient stability
title Extending the Frequency Bandwidth of Transient Stability Simulation Using Dynamic Phasors
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T14%3A30%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Extending%20the%20Frequency%20Bandwidth%20of%20Transient%20Stability%20Simulation%20Using%20Dynamic%20Phasors&rft.jtitle=IEEE%20transactions%20on%20power%20systems&rft.au=Kulasza,%20M.%20A.&rft.date=2022-01&rft.volume=37&rft.issue=1&rft.spage=249&rft.epage=259&rft.pages=249-259&rft.issn=0885-8950&rft.eissn=1558-0679&rft.coden=ITPSEG&rft_id=info:doi/10.1109/TPWRS.2021.3094451&rft_dat=%3Cproquest_ieee_%3E2612470571%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c339t-c5a07c7780b696173e8159f53ebbfcd701accf189b607f9af95fb010374ebaa13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612470571&rft_id=info:pmid/&rft_ieee_id=9473020&rfr_iscdi=true