Loading…

An Effective Framework of Automated Visual Surface Defect Detection for Metal Parts

Developing effective automated visual surface defect detection of metal parts is a challenge due to highly reflective surfaces and miscellaneous defect patterns. In this work, an effective framework consisting of an image registration module and a defect detection module is proposed to cope with thi...

Full description

Saved in:
Bibliographic Details
Published in:IEEE sensors journal 2021-09, Vol.21 (18), p.20412-20420
Main Authors: Qiu, Kepeng, Tian, Luo, Wang, Peng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-b6378dd90662ed0a1ce10cb54fa6303ee6457861fa5ca4ea35a692157fadb5e63
cites cdi_FETCH-LOGICAL-c293t-b6378dd90662ed0a1ce10cb54fa6303ee6457861fa5ca4ea35a692157fadb5e63
container_end_page 20420
container_issue 18
container_start_page 20412
container_title IEEE sensors journal
container_volume 21
creator Qiu, Kepeng
Tian, Luo
Wang, Peng
description Developing effective automated visual surface defect detection of metal parts is a challenge due to highly reflective surfaces and miscellaneous defect patterns. In this work, an effective framework consisting of an image registration module and a defect detection module is proposed to cope with this challenge. First, an algorithm based on dual weighted principal component analysis is designed for the image registration module. In this algorithm, the visual feature and spatial feature are integrated into a unified principal component to obtain highly accurate image registration results. Then, a defect detection module is constructed using an image difference algorithm with prior constraints. In this module, two categories of constraint bounding boxes are designed to reduce the misdetection due to the susceptible edges and improve the accuracy of surface defect detection of metal parts. Three applications, including a magnetic resonance imaging dataset, a printed circuit board dataset, and an industrial case of the stainless-steel positioning pins are provided to illustrate the superiority of the proposed framework.
doi_str_mv 10.1109/JSEN.2021.3095410
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9475966</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9475966</ieee_id><sourcerecordid>2572670702</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-b6378dd90662ed0a1ce10cb54fa6303ee6457861fa5ca4ea35a692157fadb5e63</originalsourceid><addsrcrecordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY5JMlqW2PqgPqIq7kGZuYGrbaJJR_PfO0OLq3MV3zoUPoXNKRpQSfXW_mD6OGGF0xIkWJSUHaECFqAqqyuqwvzkpSq7ej9FJSitCqFZCDdBivMVT78Hl5hvwLNoN_IT4gYPH4zaHjc1Q47cmtXaNF2301gG-hp7vIve1sMU-RPwAuUOebczpFB15u05wts8hep1NXya3xfzp5m4ynheOaZ6LpeSqqmtNpGRQE0sdUOKWovRWcsIBZClUJam3wtkSLBdWakaF8rZeCpB8iC53u58xfLWQslmFNm67l4YJxaQiirCOojvKxZBSBG8-Y7Ox8ddQYnp3pndnendm767rXOw6DQD887pUQkvJ_wAlMGo-</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2572670702</pqid></control><display><type>article</type><title>An Effective Framework of Automated Visual Surface Defect Detection for Metal Parts</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Qiu, Kepeng ; Tian, Luo ; Wang, Peng</creator><creatorcontrib>Qiu, Kepeng ; Tian, Luo ; Wang, Peng</creatorcontrib><description>Developing effective automated visual surface defect detection of metal parts is a challenge due to highly reflective surfaces and miscellaneous defect patterns. In this work, an effective framework consisting of an image registration module and a defect detection module is proposed to cope with this challenge. First, an algorithm based on dual weighted principal component analysis is designed for the image registration module. In this algorithm, the visual feature and spatial feature are integrated into a unified principal component to obtain highly accurate image registration results. Then, a defect detection module is constructed using an image difference algorithm with prior constraints. In this module, two categories of constraint bounding boxes are designed to reduce the misdetection due to the susceptible edges and improve the accuracy of surface defect detection of metal parts. Three applications, including a magnetic resonance imaging dataset, a printed circuit board dataset, and an industrial case of the stainless-steel positioning pins are provided to illustrate the superiority of the proposed framework.</description><identifier>ISSN: 1530-437X</identifier><identifier>EISSN: 1558-1748</identifier><identifier>DOI: 10.1109/JSEN.2021.3095410</identifier><identifier>CODEN: ISJEAZ</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Automation ; Datasets ; Defect detection ; Feature extraction ; image difference ; Image registration ; machine vision ; Magnetic resonance imaging ; metal parts ; Metals ; Modules ; Principal components analysis ; Registration ; Stainless steels ; Surface defects ; Surface morphology ; Surface texture ; Surface treatment ; Visualization</subject><ispartof>IEEE sensors journal, 2021-09, Vol.21 (18), p.20412-20420</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-b6378dd90662ed0a1ce10cb54fa6303ee6457861fa5ca4ea35a692157fadb5e63</citedby><cites>FETCH-LOGICAL-c293t-b6378dd90662ed0a1ce10cb54fa6303ee6457861fa5ca4ea35a692157fadb5e63</cites><orcidid>0000-0002-3695-5584 ; 0000-0002-5578-3626</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9475966$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Qiu, Kepeng</creatorcontrib><creatorcontrib>Tian, Luo</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><title>An Effective Framework of Automated Visual Surface Defect Detection for Metal Parts</title><title>IEEE sensors journal</title><addtitle>JSEN</addtitle><description>Developing effective automated visual surface defect detection of metal parts is a challenge due to highly reflective surfaces and miscellaneous defect patterns. In this work, an effective framework consisting of an image registration module and a defect detection module is proposed to cope with this challenge. First, an algorithm based on dual weighted principal component analysis is designed for the image registration module. In this algorithm, the visual feature and spatial feature are integrated into a unified principal component to obtain highly accurate image registration results. Then, a defect detection module is constructed using an image difference algorithm with prior constraints. In this module, two categories of constraint bounding boxes are designed to reduce the misdetection due to the susceptible edges and improve the accuracy of surface defect detection of metal parts. Three applications, including a magnetic resonance imaging dataset, a printed circuit board dataset, and an industrial case of the stainless-steel positioning pins are provided to illustrate the superiority of the proposed framework.</description><subject>Algorithms</subject><subject>Automation</subject><subject>Datasets</subject><subject>Defect detection</subject><subject>Feature extraction</subject><subject>image difference</subject><subject>Image registration</subject><subject>machine vision</subject><subject>Magnetic resonance imaging</subject><subject>metal parts</subject><subject>Metals</subject><subject>Modules</subject><subject>Principal components analysis</subject><subject>Registration</subject><subject>Stainless steels</subject><subject>Surface defects</subject><subject>Surface morphology</subject><subject>Surface texture</subject><subject>Surface treatment</subject><subject>Visualization</subject><issn>1530-437X</issn><issn>1558-1748</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtLAzEUhYMoWKs_QNwEXE_NY5JMlqW2PqgPqIq7kGZuYGrbaJJR_PfO0OLq3MV3zoUPoXNKRpQSfXW_mD6OGGF0xIkWJSUHaECFqAqqyuqwvzkpSq7ej9FJSitCqFZCDdBivMVT78Hl5hvwLNoN_IT4gYPH4zaHjc1Q47cmtXaNF2301gG-hp7vIve1sMU-RPwAuUOebczpFB15u05wts8hep1NXya3xfzp5m4ynheOaZ6LpeSqqmtNpGRQE0sdUOKWovRWcsIBZClUJam3wtkSLBdWakaF8rZeCpB8iC53u58xfLWQslmFNm67l4YJxaQiirCOojvKxZBSBG8-Y7Ox8ddQYnp3pndnendm767rXOw6DQD887pUQkvJ_wAlMGo-</recordid><startdate>20210915</startdate><enddate>20210915</enddate><creator>Qiu, Kepeng</creator><creator>Tian, Luo</creator><creator>Wang, Peng</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-3695-5584</orcidid><orcidid>https://orcid.org/0000-0002-5578-3626</orcidid></search><sort><creationdate>20210915</creationdate><title>An Effective Framework of Automated Visual Surface Defect Detection for Metal Parts</title><author>Qiu, Kepeng ; Tian, Luo ; Wang, Peng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-b6378dd90662ed0a1ce10cb54fa6303ee6457861fa5ca4ea35a692157fadb5e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>Automation</topic><topic>Datasets</topic><topic>Defect detection</topic><topic>Feature extraction</topic><topic>image difference</topic><topic>Image registration</topic><topic>machine vision</topic><topic>Magnetic resonance imaging</topic><topic>metal parts</topic><topic>Metals</topic><topic>Modules</topic><topic>Principal components analysis</topic><topic>Registration</topic><topic>Stainless steels</topic><topic>Surface defects</topic><topic>Surface morphology</topic><topic>Surface texture</topic><topic>Surface treatment</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Qiu, Kepeng</creatorcontrib><creatorcontrib>Tian, Luo</creatorcontrib><creatorcontrib>Wang, Peng</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE sensors journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Qiu, Kepeng</au><au>Tian, Luo</au><au>Wang, Peng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Effective Framework of Automated Visual Surface Defect Detection for Metal Parts</atitle><jtitle>IEEE sensors journal</jtitle><stitle>JSEN</stitle><date>2021-09-15</date><risdate>2021</risdate><volume>21</volume><issue>18</issue><spage>20412</spage><epage>20420</epage><pages>20412-20420</pages><issn>1530-437X</issn><eissn>1558-1748</eissn><coden>ISJEAZ</coden><abstract>Developing effective automated visual surface defect detection of metal parts is a challenge due to highly reflective surfaces and miscellaneous defect patterns. In this work, an effective framework consisting of an image registration module and a defect detection module is proposed to cope with this challenge. First, an algorithm based on dual weighted principal component analysis is designed for the image registration module. In this algorithm, the visual feature and spatial feature are integrated into a unified principal component to obtain highly accurate image registration results. Then, a defect detection module is constructed using an image difference algorithm with prior constraints. In this module, two categories of constraint bounding boxes are designed to reduce the misdetection due to the susceptible edges and improve the accuracy of surface defect detection of metal parts. Three applications, including a magnetic resonance imaging dataset, a printed circuit board dataset, and an industrial case of the stainless-steel positioning pins are provided to illustrate the superiority of the proposed framework.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JSEN.2021.3095410</doi><tpages>9</tpages><orcidid>https://orcid.org/0000-0002-3695-5584</orcidid><orcidid>https://orcid.org/0000-0002-5578-3626</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1530-437X
ispartof IEEE sensors journal, 2021-09, Vol.21 (18), p.20412-20420
issn 1530-437X
1558-1748
language eng
recordid cdi_ieee_primary_9475966
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Automation
Datasets
Defect detection
Feature extraction
image difference
Image registration
machine vision
Magnetic resonance imaging
metal parts
Metals
Modules
Principal components analysis
Registration
Stainless steels
Surface defects
Surface morphology
Surface texture
Surface treatment
Visualization
title An Effective Framework of Automated Visual Surface Defect Detection for Metal Parts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T21%3A54%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Effective%20Framework%20of%20Automated%20Visual%20Surface%20Defect%20Detection%20for%20Metal%20Parts&rft.jtitle=IEEE%20sensors%20journal&rft.au=Qiu,%20Kepeng&rft.date=2021-09-15&rft.volume=21&rft.issue=18&rft.spage=20412&rft.epage=20420&rft.pages=20412-20420&rft.issn=1530-437X&rft.eissn=1558-1748&rft.coden=ISJEAZ&rft_id=info:doi/10.1109/JSEN.2021.3095410&rft_dat=%3Cproquest_ieee_%3E2572670702%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-b6378dd90662ed0a1ce10cb54fa6303ee6457861fa5ca4ea35a692157fadb5e63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2572670702&rft_id=info:pmid/&rft_ieee_id=9475966&rfr_iscdi=true