Loading…

Performance of Controller Designs in Small-Disturbance Angle Stability of Power Systems with Parametric Uncertainties

The electric power system is a complicated dynamic system with a range of operating states and parametric uncertainties, especially due to change of the network topology, load increment and generation scheduling. Under this circumstance, traditional power system transient stability analysis methods...

Full description

Saved in:
Bibliographic Details
Published in:Revista IEEE América Latina 2021-12, Vol.19 (12), p.2054-2061
Main Authors: Santos, Moises, Calvaittis Santana, Gabriel, De Campos, Mauricio, Sperandio, Mauricio, Sausen, Paulo S.
Format: Article
Language:eng ; por
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-1f9397d78e0934225073448e4d7006014690b070ab60ceadae67cb68fc2b14d43
cites
container_end_page 2061
container_issue 12
container_start_page 2054
container_title Revista IEEE América Latina
container_volume 19
creator Santos, Moises
Calvaittis Santana, Gabriel
De Campos, Mauricio
Sperandio, Mauricio
Sausen, Paulo S.
description The electric power system is a complicated dynamic system with a range of operating states and parametric uncertainties, especially due to change of the network topology, load increment and generation scheduling. Under this circumstance, traditional power system transient stability analysis methods may not always be appropriate. This paper presents the development of a computational methodology for evaluating the effect of parametric uncertainties on the small-signal stability analysis of power systems. A probabilistic approach is applied as a metric for the dynamic performance of the damping ratio of critical eigenvalues. The method is based on a Monte Carlo simulation for the analysis of automatic control of generation. The methodology is used for the performance evaluation of three classical controller tuning techniques: Frequency Response, Approximate Method and Ziegler-Nichols. The results show that the methodology is valid and potentially useful for quantifying the effect of parametric uncertainties in power systems dynamics simulations.
doi_str_mv 10.1109/TLA.2021.9480147
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9480147</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9480147</ieee_id><sourcerecordid>2551370143</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-1f9397d78e0934225073448e4d7006014690b070ab60ceadae67cb68fc2b14d43</originalsourceid><addsrcrecordid>eNpNkMtrAjEQh0Npodb2Xugl0PPayWMfOYr2BUIF9bxkd2dtZB82iYj_fWO1pacZmO-bYX6E3DMYMQbqaTkbjzhwNlIyAybTCzJgscwiUIpf_uuvyY1zGwCRJZkYkN0cbd3bVncl0r6mk77ztm8atHSKzqw7R01HF61ummhqnN_Z4gcdd-sG6cLrwjTGH47qvN8Ha3FwHltH98Z_0rm2ukVvTUlXwbJem84bdLfkqtaNw7tzHZLVy_Ny8hbNPl7fJ-NZVHLFfMRqJVRapRmCEpLzGFIhZYaySgGS8GWioIAUdJFAibrSmKRlkWR1yQsmKymG5PG0d2v7rx06n2_6ne3CyZzHMRNp2CECBSeqtL1zFut8a02r7SFnkB_DzUO4-THc_BxuUB5OikHEP_x3-g01-nY0</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2551370143</pqid></control><display><type>article</type><title>Performance of Controller Designs in Small-Disturbance Angle Stability of Power Systems with Parametric Uncertainties</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Santos, Moises ; Calvaittis Santana, Gabriel ; De Campos, Mauricio ; Sperandio, Mauricio ; Sausen, Paulo S.</creator><creatorcontrib>Santos, Moises ; Calvaittis Santana, Gabriel ; De Campos, Mauricio ; Sperandio, Mauricio ; Sausen, Paulo S.</creatorcontrib><description>The electric power system is a complicated dynamic system with a range of operating states and parametric uncertainties, especially due to change of the network topology, load increment and generation scheduling. Under this circumstance, traditional power system transient stability analysis methods may not always be appropriate. This paper presents the development of a computational methodology for evaluating the effect of parametric uncertainties on the small-signal stability analysis of power systems. A probabilistic approach is applied as a metric for the dynamic performance of the damping ratio of critical eigenvalues. The method is based on a Monte Carlo simulation for the analysis of automatic control of generation. The methodology is used for the performance evaluation of three classical controller tuning techniques: Frequency Response, Approximate Method and Ziegler-Nichols. The results show that the methodology is valid and potentially useful for quantifying the effect of parametric uncertainties in power systems dynamics simulations.</description><identifier>ISSN: 1548-0992</identifier><identifier>EISSN: 1548-0992</identifier><identifier>DOI: 10.1109/TLA.2021.9480147</identifier><language>eng ; por</language><publisher>Los Alamitos: IEEE</publisher><subject>angle stability ; Approximation ; Automatic control ; automatic generation control ; Control stability ; Control systems design ; controller design ; Controllers ; Damping ratio ; Dynamic scheduling ; Eigenvalues ; Electric power systems ; Frequency response ; IEEE transactions ; Jacobian matrices ; Methodology ; Monte Carlo methods ; Monte Carlo simulation ; Network topologies ; parametric uncertainties ; Performance evaluation ; Power system dynamics ; Power system stability ; Stability analysis ; Transient stability ; Uncertainty</subject><ispartof>Revista IEEE América Latina, 2021-12, Vol.19 (12), p.2054-2061</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-1f9397d78e0934225073448e4d7006014690b070ab60ceadae67cb68fc2b14d43</citedby><orcidid>0000-0001-8691-2913 ; 0000-0001-9863-8800 ; 0000-0003-1681-1425 ; 0000-0003-4507-8437</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9480147$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Santos, Moises</creatorcontrib><creatorcontrib>Calvaittis Santana, Gabriel</creatorcontrib><creatorcontrib>De Campos, Mauricio</creatorcontrib><creatorcontrib>Sperandio, Mauricio</creatorcontrib><creatorcontrib>Sausen, Paulo S.</creatorcontrib><title>Performance of Controller Designs in Small-Disturbance Angle Stability of Power Systems with Parametric Uncertainties</title><title>Revista IEEE América Latina</title><addtitle>T-LA</addtitle><description>The electric power system is a complicated dynamic system with a range of operating states and parametric uncertainties, especially due to change of the network topology, load increment and generation scheduling. Under this circumstance, traditional power system transient stability analysis methods may not always be appropriate. This paper presents the development of a computational methodology for evaluating the effect of parametric uncertainties on the small-signal stability analysis of power systems. A probabilistic approach is applied as a metric for the dynamic performance of the damping ratio of critical eigenvalues. The method is based on a Monte Carlo simulation for the analysis of automatic control of generation. The methodology is used for the performance evaluation of three classical controller tuning techniques: Frequency Response, Approximate Method and Ziegler-Nichols. The results show that the methodology is valid and potentially useful for quantifying the effect of parametric uncertainties in power systems dynamics simulations.</description><subject>angle stability</subject><subject>Approximation</subject><subject>Automatic control</subject><subject>automatic generation control</subject><subject>Control stability</subject><subject>Control systems design</subject><subject>controller design</subject><subject>Controllers</subject><subject>Damping ratio</subject><subject>Dynamic scheduling</subject><subject>Eigenvalues</subject><subject>Electric power systems</subject><subject>Frequency response</subject><subject>IEEE transactions</subject><subject>Jacobian matrices</subject><subject>Methodology</subject><subject>Monte Carlo methods</subject><subject>Monte Carlo simulation</subject><subject>Network topologies</subject><subject>parametric uncertainties</subject><subject>Performance evaluation</subject><subject>Power system dynamics</subject><subject>Power system stability</subject><subject>Stability analysis</subject><subject>Transient stability</subject><subject>Uncertainty</subject><issn>1548-0992</issn><issn>1548-0992</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNpNkMtrAjEQh0Npodb2Xugl0PPayWMfOYr2BUIF9bxkd2dtZB82iYj_fWO1pacZmO-bYX6E3DMYMQbqaTkbjzhwNlIyAybTCzJgscwiUIpf_uuvyY1zGwCRJZkYkN0cbd3bVncl0r6mk77ztm8atHSKzqw7R01HF61ummhqnN_Z4gcdd-sG6cLrwjTGH47qvN8Ha3FwHltH98Z_0rm2ukVvTUlXwbJem84bdLfkqtaNw7tzHZLVy_Ny8hbNPl7fJ-NZVHLFfMRqJVRapRmCEpLzGFIhZYaySgGS8GWioIAUdJFAibrSmKRlkWR1yQsmKymG5PG0d2v7rx06n2_6ne3CyZzHMRNp2CECBSeqtL1zFut8a02r7SFnkB_DzUO4-THc_BxuUB5OikHEP_x3-g01-nY0</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Santos, Moises</creator><creator>Calvaittis Santana, Gabriel</creator><creator>De Campos, Mauricio</creator><creator>Sperandio, Mauricio</creator><creator>Sausen, Paulo S.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-8691-2913</orcidid><orcidid>https://orcid.org/0000-0001-9863-8800</orcidid><orcidid>https://orcid.org/0000-0003-1681-1425</orcidid><orcidid>https://orcid.org/0000-0003-4507-8437</orcidid></search><sort><creationdate>20211201</creationdate><title>Performance of Controller Designs in Small-Disturbance Angle Stability of Power Systems with Parametric Uncertainties</title><author>Santos, Moises ; Calvaittis Santana, Gabriel ; De Campos, Mauricio ; Sperandio, Mauricio ; Sausen, Paulo S.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-1f9397d78e0934225073448e4d7006014690b070ab60ceadae67cb68fc2b14d43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng ; por</language><creationdate>2021</creationdate><topic>angle stability</topic><topic>Approximation</topic><topic>Automatic control</topic><topic>automatic generation control</topic><topic>Control stability</topic><topic>Control systems design</topic><topic>controller design</topic><topic>Controllers</topic><topic>Damping ratio</topic><topic>Dynamic scheduling</topic><topic>Eigenvalues</topic><topic>Electric power systems</topic><topic>Frequency response</topic><topic>IEEE transactions</topic><topic>Jacobian matrices</topic><topic>Methodology</topic><topic>Monte Carlo methods</topic><topic>Monte Carlo simulation</topic><topic>Network topologies</topic><topic>parametric uncertainties</topic><topic>Performance evaluation</topic><topic>Power system dynamics</topic><topic>Power system stability</topic><topic>Stability analysis</topic><topic>Transient stability</topic><topic>Uncertainty</topic><toplevel>online_resources</toplevel><creatorcontrib>Santos, Moises</creatorcontrib><creatorcontrib>Calvaittis Santana, Gabriel</creatorcontrib><creatorcontrib>De Campos, Mauricio</creatorcontrib><creatorcontrib>Sperandio, Mauricio</creatorcontrib><creatorcontrib>Sausen, Paulo S.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Revista IEEE América Latina</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Santos, Moises</au><au>Calvaittis Santana, Gabriel</au><au>De Campos, Mauricio</au><au>Sperandio, Mauricio</au><au>Sausen, Paulo S.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Performance of Controller Designs in Small-Disturbance Angle Stability of Power Systems with Parametric Uncertainties</atitle><jtitle>Revista IEEE América Latina</jtitle><stitle>T-LA</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>19</volume><issue>12</issue><spage>2054</spage><epage>2061</epage><pages>2054-2061</pages><issn>1548-0992</issn><eissn>1548-0992</eissn><abstract>The electric power system is a complicated dynamic system with a range of operating states and parametric uncertainties, especially due to change of the network topology, load increment and generation scheduling. Under this circumstance, traditional power system transient stability analysis methods may not always be appropriate. This paper presents the development of a computational methodology for evaluating the effect of parametric uncertainties on the small-signal stability analysis of power systems. A probabilistic approach is applied as a metric for the dynamic performance of the damping ratio of critical eigenvalues. The method is based on a Monte Carlo simulation for the analysis of automatic control of generation. The methodology is used for the performance evaluation of three classical controller tuning techniques: Frequency Response, Approximate Method and Ziegler-Nichols. The results show that the methodology is valid and potentially useful for quantifying the effect of parametric uncertainties in power systems dynamics simulations.</abstract><cop>Los Alamitos</cop><pub>IEEE</pub><doi>10.1109/TLA.2021.9480147</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-8691-2913</orcidid><orcidid>https://orcid.org/0000-0001-9863-8800</orcidid><orcidid>https://orcid.org/0000-0003-1681-1425</orcidid><orcidid>https://orcid.org/0000-0003-4507-8437</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1548-0992
ispartof Revista IEEE América Latina, 2021-12, Vol.19 (12), p.2054-2061
issn 1548-0992
1548-0992
language eng ; por
recordid cdi_ieee_primary_9480147
source IEEE Electronic Library (IEL) Journals
subjects angle stability
Approximation
Automatic control
automatic generation control
Control stability
Control systems design
controller design
Controllers
Damping ratio
Dynamic scheduling
Eigenvalues
Electric power systems
Frequency response
IEEE transactions
Jacobian matrices
Methodology
Monte Carlo methods
Monte Carlo simulation
Network topologies
parametric uncertainties
Performance evaluation
Power system dynamics
Power system stability
Stability analysis
Transient stability
Uncertainty
title Performance of Controller Designs in Small-Disturbance Angle Stability of Power Systems with Parametric Uncertainties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T01%3A49%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Performance%20of%20Controller%20Designs%20in%20Small-Disturbance%20Angle%20Stability%20of%20Power%20Systems%20with%20Parametric%20Uncertainties&rft.jtitle=Revista%20IEEE%20Am%C3%A9rica%20Latina&rft.au=Santos,%20Moises&rft.date=2021-12-01&rft.volume=19&rft.issue=12&rft.spage=2054&rft.epage=2061&rft.pages=2054-2061&rft.issn=1548-0992&rft.eissn=1548-0992&rft_id=info:doi/10.1109/TLA.2021.9480147&rft_dat=%3Cproquest_ieee_%3E2551370143%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-1f9397d78e0934225073448e4d7006014690b070ab60ceadae67cb68fc2b14d43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2551370143&rft_id=info:pmid/&rft_ieee_id=9480147&rfr_iscdi=true