Loading…

Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks

The deployment of DER with smart-inverter functionality is increasing the controllable assets on power distribution networks and, consequently, the cyber-physical attack surface. Within this work, we consider the use of reinforcement learning as an online controller that adjusts DER Volt/Var and Vol...

Full description

Saved in:
Bibliographic Details
Main Authors: Roberts, Ciaran, Ngo, Sy-Toan, Milesi, Alexandre, Scaglione, Anna, Peisert, Sean, Arnold, Daniel
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2867
container_issue
container_start_page 2861
container_title
container_volume
creator Roberts, Ciaran
Ngo, Sy-Toan
Milesi, Alexandre
Scaglione, Anna
Peisert, Sean
Arnold, Daniel
description The deployment of DER with smart-inverter functionality is increasing the controllable assets on power distribution networks and, consequently, the cyber-physical attack surface. Within this work, we consider the use of reinforcement learning as an online controller that adjusts DER Volt/Var and Volt/Watt control logic to mitigate network voltage unbalance. We specifically focus on the case where a network-aware cyber-physical attack has compromised a subset of single-phase DER, causing a large voltage unbalance. We show how deep reinforcement learning successfully learns a policy minimizing the unbalance, both during normal operation and during a cyber-physical attack. In mitigating the attack, the learned stochastic policy operates alongside legacy equipment on the network, i.e. tap-changing transformers, adjusting optimally predefined DER control-logic.
doi_str_mv 10.23919/ACC50511.2021.9482815
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9482815</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9482815</ieee_id><sourcerecordid>9482815</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-a6828447095e73640dc9391265157f54c57748dc386acd23e0b46a352486bbe93</originalsourceid><addsrcrecordid>eNotkM1Kw0AcxFdBsK0-gSD7Aon7_XEsaa1CRClWj2Wz-SeuptuS7CVvb8SehpnDj5lB6J6SnHFL7cOyKCSRlOaMMJpbYZih8gLNqVJSCGq1ukQzxrXJpFH0Gs2H4ZsQaq0iM_S5AjjhLYTYHHsPB4gJl-D6GGKLpwi_hBRal_5sMVbQZ29f4xC86_BqvcUfxy65FvAuVq5z0QNepuT8z3CDrhrXDXB71gXaPa7fi6esfN08F8syC4zwlDk1tRVCEytBcyVI7e00iilJpW6k8FJrYWrPjXK-ZhxIJZTjkgmjqgosX6C7f24AgP2pDwfXj_vzCfwXl6dQbQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks</title><source>IEEE Xplore All Conference Series</source><creator>Roberts, Ciaran ; Ngo, Sy-Toan ; Milesi, Alexandre ; Scaglione, Anna ; Peisert, Sean ; Arnold, Daniel</creator><creatorcontrib>Roberts, Ciaran ; Ngo, Sy-Toan ; Milesi, Alexandre ; Scaglione, Anna ; Peisert, Sean ; Arnold, Daniel</creatorcontrib><description>The deployment of DER with smart-inverter functionality is increasing the controllable assets on power distribution networks and, consequently, the cyber-physical attack surface. Within this work, we consider the use of reinforcement learning as an online controller that adjusts DER Volt/Var and Volt/Watt control logic to mitigate network voltage unbalance. We specifically focus on the case where a network-aware cyber-physical attack has compromised a subset of single-phase DER, causing a large voltage unbalance. We show how deep reinforcement learning successfully learns a policy minimizing the unbalance, both during normal operation and during a cyber-physical attack. In mitigating the attack, the learned stochastic policy operates alongside legacy equipment on the network, i.e. tap-changing transformers, adjusting optimally predefined DER control-logic.</description><identifier>EISSN: 2378-5861</identifier><identifier>EISBN: 1665441976</identifier><identifier>EISBN: 9781665441971</identifier><identifier>DOI: 10.23919/ACC50511.2021.9482815</identifier><language>eng</language><publisher>American Automatic Control Council</publisher><subject>Inverters ; Libraries ; Performance gain ; Power systems ; Reinforcement learning ; Sensitivity ; Training</subject><ispartof>2021 American Control Conference (ACC), 2021, p.2861-2867</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9482815$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9482815$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Roberts, Ciaran</creatorcontrib><creatorcontrib>Ngo, Sy-Toan</creatorcontrib><creatorcontrib>Milesi, Alexandre</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Arnold, Daniel</creatorcontrib><title>Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks</title><title>2021 American Control Conference (ACC)</title><addtitle>ACC</addtitle><description>The deployment of DER with smart-inverter functionality is increasing the controllable assets on power distribution networks and, consequently, the cyber-physical attack surface. Within this work, we consider the use of reinforcement learning as an online controller that adjusts DER Volt/Var and Volt/Watt control logic to mitigate network voltage unbalance. We specifically focus on the case where a network-aware cyber-physical attack has compromised a subset of single-phase DER, causing a large voltage unbalance. We show how deep reinforcement learning successfully learns a policy minimizing the unbalance, both during normal operation and during a cyber-physical attack. In mitigating the attack, the learned stochastic policy operates alongside legacy equipment on the network, i.e. tap-changing transformers, adjusting optimally predefined DER control-logic.</description><subject>Inverters</subject><subject>Libraries</subject><subject>Performance gain</subject><subject>Power systems</subject><subject>Reinforcement learning</subject><subject>Sensitivity</subject><subject>Training</subject><issn>2378-5861</issn><isbn>1665441976</isbn><isbn>9781665441971</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1Kw0AcxFdBsK0-gSD7Aon7_XEsaa1CRClWj2Wz-SeuptuS7CVvb8SehpnDj5lB6J6SnHFL7cOyKCSRlOaMMJpbYZih8gLNqVJSCGq1ukQzxrXJpFH0Gs2H4ZsQaq0iM_S5AjjhLYTYHHsPB4gJl-D6GGKLpwi_hBRal_5sMVbQZ29f4xC86_BqvcUfxy65FvAuVq5z0QNepuT8z3CDrhrXDXB71gXaPa7fi6esfN08F8syC4zwlDk1tRVCEytBcyVI7e00iilJpW6k8FJrYWrPjXK-ZhxIJZTjkgmjqgosX6C7f24AgP2pDwfXj_vzCfwXl6dQbQ</recordid><startdate>20210525</startdate><enddate>20210525</enddate><creator>Roberts, Ciaran</creator><creator>Ngo, Sy-Toan</creator><creator>Milesi, Alexandre</creator><creator>Scaglione, Anna</creator><creator>Peisert, Sean</creator><creator>Arnold, Daniel</creator><general>American Automatic Control Council</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210525</creationdate><title>Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks</title><author>Roberts, Ciaran ; Ngo, Sy-Toan ; Milesi, Alexandre ; Scaglione, Anna ; Peisert, Sean ; Arnold, Daniel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-a6828447095e73640dc9391265157f54c57748dc386acd23e0b46a352486bbe93</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Inverters</topic><topic>Libraries</topic><topic>Performance gain</topic><topic>Power systems</topic><topic>Reinforcement learning</topic><topic>Sensitivity</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Roberts, Ciaran</creatorcontrib><creatorcontrib>Ngo, Sy-Toan</creatorcontrib><creatorcontrib>Milesi, Alexandre</creatorcontrib><creatorcontrib>Scaglione, Anna</creatorcontrib><creatorcontrib>Peisert, Sean</creatorcontrib><creatorcontrib>Arnold, Daniel</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Roberts, Ciaran</au><au>Ngo, Sy-Toan</au><au>Milesi, Alexandre</au><au>Scaglione, Anna</au><au>Peisert, Sean</au><au>Arnold, Daniel</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks</atitle><btitle>2021 American Control Conference (ACC)</btitle><stitle>ACC</stitle><date>2021-05-25</date><risdate>2021</risdate><spage>2861</spage><epage>2867</epage><pages>2861-2867</pages><eissn>2378-5861</eissn><eisbn>1665441976</eisbn><eisbn>9781665441971</eisbn><abstract>The deployment of DER with smart-inverter functionality is increasing the controllable assets on power distribution networks and, consequently, the cyber-physical attack surface. Within this work, we consider the use of reinforcement learning as an online controller that adjusts DER Volt/Var and Volt/Watt control logic to mitigate network voltage unbalance. We specifically focus on the case where a network-aware cyber-physical attack has compromised a subset of single-phase DER, causing a large voltage unbalance. We show how deep reinforcement learning successfully learns a policy minimizing the unbalance, both during normal operation and during a cyber-physical attack. In mitigating the attack, the learned stochastic policy operates alongside legacy equipment on the network, i.e. tap-changing transformers, adjusting optimally predefined DER control-logic.</abstract><pub>American Automatic Control Council</pub><doi>10.23919/ACC50511.2021.9482815</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2378-5861
ispartof 2021 American Control Conference (ACC), 2021, p.2861-2867
issn 2378-5861
language eng
recordid cdi_ieee_primary_9482815
source IEEE Xplore All Conference Series
subjects Inverters
Libraries
Performance gain
Power systems
Reinforcement learning
Sensitivity
Training
title Deep Reinforcement Learning for Mitigating Cyber-Physical DER Voltage Unbalance Attacks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T03%3A54%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Deep%20Reinforcement%20Learning%20for%20Mitigating%20Cyber-Physical%20DER%20Voltage%20Unbalance%20Attacks&rft.btitle=2021%20American%20Control%20Conference%20(ACC)&rft.au=Roberts,%20Ciaran&rft.date=2021-05-25&rft.spage=2861&rft.epage=2867&rft.pages=2861-2867&rft.eissn=2378-5861&rft_id=info:doi/10.23919/ACC50511.2021.9482815&rft.eisbn=1665441976&rft.eisbn_list=9781665441971&rft_dat=%3Cieee_CHZPO%3E9482815%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-a6828447095e73640dc9391265157f54c57748dc386acd23e0b46a352486bbe93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9482815&rfr_iscdi=true