Loading…

SODA: Similar 3D Object Detection Accelerator at Network Edge for Autonomous Driving

Offloading the 3D object detection from autonomous vehicles to MEC is appealing because of the gains on quality, latency, and energy. However, detection requests lead to repetitive computations since the multitudinous requests share approximate detection results. It is crucial to reduce such fuzzy r...

Full description

Saved in:
Bibliographic Details
Main Authors: Xu, Wenquan, Song, Haoyu, Hou, Linyang, Zheng, Hui, Zhang, Xinggong, Zhang, Chuwen, Hu, Wei, Wang, Yi, Liu, Bin
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10
container_issue
container_start_page 1
container_title
container_volume
creator Xu, Wenquan
Song, Haoyu
Hou, Linyang
Zheng, Hui
Zhang, Xinggong
Zhang, Chuwen
Hu, Wei
Wang, Yi
Liu, Bin
description Offloading the 3D object detection from autonomous vehicles to MEC is appealing because of the gains on quality, latency, and energy. However, detection requests lead to repetitive computations since the multitudinous requests share approximate detection results. It is crucial to reduce such fuzzy redundancy by reusing the previous results. A key challenge is that the requests mapping to the reusable result are only similar but not identical. An efficient method for similarity matching is needed to justify the use case. To this end, by taking advantage of TCAM's ap-proximate matching capability and NMC's computing efficiency, we design SODA, a first-of-its-kind hardware accelerator which sits in the mobile base stations between autonomous vehicles and MEC servers. We design efficient feature encoding and partition algorithms for SODA to ensure the quality of the similarity matching and result reuse. Our evaluation shows that SODA significantly improves the system performance and the detection results exceed the accuracy requirements on the subject matter, qualifying SODA as a practical domain-specific solution.
doi_str_mv 10.1109/INFOCOM42981.2021.9488833
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9488833</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9488833</ieee_id><sourcerecordid>9488833</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-373d86cf1a896dac1939855a37bbe2f67a1f93adea81b547d5993471b4b798893</originalsourceid><addsrcrecordid>eNotkEFPwjAYQKuJiYj8Ai_1Bwzbfl371dvCQEmQHcAz6baOFNlmuqLh30sip5e8wzs8Qp45m3LOzMtyvShmxYcUBvlUMMGnRiIiwA2ZGI1cqVQyEKm4JSOhJE8ManlPHobhwBhDLdSIbDdFnr3SjW_90QYKOS3Kg6sizV28wPcdzarKHV2wsQ_URrp28bcPX3Re7x1tLi47xb7r2_400Dz4H9_tH8ldY4-Dm1w5Jp-L-Xb2nqyKt-UsWyVeMIgJaKhRVQ23aFRtK27AYJpa0GXpRKO05Y0BWzuLvEylrlNjQGpeylIbRANj8vTf9c653XfwrQ3n3XUC_AEEFVFD</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>SODA: Similar 3D Object Detection Accelerator at Network Edge for Autonomous Driving</title><source>IEEE Xplore All Conference Series</source><creator>Xu, Wenquan ; Song, Haoyu ; Hou, Linyang ; Zheng, Hui ; Zhang, Xinggong ; Zhang, Chuwen ; Hu, Wei ; Wang, Yi ; Liu, Bin</creator><creatorcontrib>Xu, Wenquan ; Song, Haoyu ; Hou, Linyang ; Zheng, Hui ; Zhang, Xinggong ; Zhang, Chuwen ; Hu, Wei ; Wang, Yi ; Liu, Bin</creatorcontrib><description>Offloading the 3D object detection from autonomous vehicles to MEC is appealing because of the gains on quality, latency, and energy. However, detection requests lead to repetitive computations since the multitudinous requests share approximate detection results. It is crucial to reduce such fuzzy redundancy by reusing the previous results. A key challenge is that the requests mapping to the reusable result are only similar but not identical. An efficient method for similarity matching is needed to justify the use case. To this end, by taking advantage of TCAM's ap-proximate matching capability and NMC's computing efficiency, we design SODA, a first-of-its-kind hardware accelerator which sits in the mobile base stations between autonomous vehicles and MEC servers. We design efficient feature encoding and partition algorithms for SODA to ensure the quality of the similarity matching and result reuse. Our evaluation shows that SODA significantly improves the system performance and the detection results exceed the accuracy requirements on the subject matter, qualifying SODA as a practical domain-specific solution.</description><identifier>EISSN: 2641-9874</identifier><identifier>EISBN: 9781665403252</identifier><identifier>EISBN: 166540325X</identifier><identifier>DOI: 10.1109/INFOCOM42981.2021.9488833</identifier><language>eng</language><publisher>IEEE</publisher><subject>Encoding ; Image edge detection ; Object detection ; Partitioning algorithms ; Redundancy ; System performance ; Three-dimensional displays</subject><ispartof>IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, 2021, p.1-10</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9488833$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9488833$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Xu, Wenquan</creatorcontrib><creatorcontrib>Song, Haoyu</creatorcontrib><creatorcontrib>Hou, Linyang</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Zhang, Xinggong</creatorcontrib><creatorcontrib>Zhang, Chuwen</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><title>SODA: Similar 3D Object Detection Accelerator at Network Edge for Autonomous Driving</title><title>IEEE INFOCOM 2021 - IEEE Conference on Computer Communications</title><addtitle>INFOCOM</addtitle><description>Offloading the 3D object detection from autonomous vehicles to MEC is appealing because of the gains on quality, latency, and energy. However, detection requests lead to repetitive computations since the multitudinous requests share approximate detection results. It is crucial to reduce such fuzzy redundancy by reusing the previous results. A key challenge is that the requests mapping to the reusable result are only similar but not identical. An efficient method for similarity matching is needed to justify the use case. To this end, by taking advantage of TCAM's ap-proximate matching capability and NMC's computing efficiency, we design SODA, a first-of-its-kind hardware accelerator which sits in the mobile base stations between autonomous vehicles and MEC servers. We design efficient feature encoding and partition algorithms for SODA to ensure the quality of the similarity matching and result reuse. Our evaluation shows that SODA significantly improves the system performance and the detection results exceed the accuracy requirements on the subject matter, qualifying SODA as a practical domain-specific solution.</description><subject>Encoding</subject><subject>Image edge detection</subject><subject>Object detection</subject><subject>Partitioning algorithms</subject><subject>Redundancy</subject><subject>System performance</subject><subject>Three-dimensional displays</subject><issn>2641-9874</issn><isbn>9781665403252</isbn><isbn>166540325X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEFPwjAYQKuJiYj8Ai_1Bwzbfl371dvCQEmQHcAz6baOFNlmuqLh30sip5e8wzs8Qp45m3LOzMtyvShmxYcUBvlUMMGnRiIiwA2ZGI1cqVQyEKm4JSOhJE8ManlPHobhwBhDLdSIbDdFnr3SjW_90QYKOS3Kg6sizV28wPcdzarKHV2wsQ_URrp28bcPX3Re7x1tLi47xb7r2_400Dz4H9_tH8ldY4-Dm1w5Jp-L-Xb2nqyKt-UsWyVeMIgJaKhRVQ23aFRtK27AYJpa0GXpRKO05Y0BWzuLvEylrlNjQGpeylIbRANj8vTf9c653XfwrQ3n3XUC_AEEFVFD</recordid><startdate>20210510</startdate><enddate>20210510</enddate><creator>Xu, Wenquan</creator><creator>Song, Haoyu</creator><creator>Hou, Linyang</creator><creator>Zheng, Hui</creator><creator>Zhang, Xinggong</creator><creator>Zhang, Chuwen</creator><creator>Hu, Wei</creator><creator>Wang, Yi</creator><creator>Liu, Bin</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210510</creationdate><title>SODA: Similar 3D Object Detection Accelerator at Network Edge for Autonomous Driving</title><author>Xu, Wenquan ; Song, Haoyu ; Hou, Linyang ; Zheng, Hui ; Zhang, Xinggong ; Zhang, Chuwen ; Hu, Wei ; Wang, Yi ; Liu, Bin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-373d86cf1a896dac1939855a37bbe2f67a1f93adea81b547d5993471b4b798893</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Encoding</topic><topic>Image edge detection</topic><topic>Object detection</topic><topic>Partitioning algorithms</topic><topic>Redundancy</topic><topic>System performance</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Xu, Wenquan</creatorcontrib><creatorcontrib>Song, Haoyu</creatorcontrib><creatorcontrib>Hou, Linyang</creatorcontrib><creatorcontrib>Zheng, Hui</creatorcontrib><creatorcontrib>Zhang, Xinggong</creatorcontrib><creatorcontrib>Zhang, Chuwen</creatorcontrib><creatorcontrib>Hu, Wei</creatorcontrib><creatorcontrib>Wang, Yi</creatorcontrib><creatorcontrib>Liu, Bin</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Xu, Wenquan</au><au>Song, Haoyu</au><au>Hou, Linyang</au><au>Zheng, Hui</au><au>Zhang, Xinggong</au><au>Zhang, Chuwen</au><au>Hu, Wei</au><au>Wang, Yi</au><au>Liu, Bin</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>SODA: Similar 3D Object Detection Accelerator at Network Edge for Autonomous Driving</atitle><btitle>IEEE INFOCOM 2021 - IEEE Conference on Computer Communications</btitle><stitle>INFOCOM</stitle><date>2021-05-10</date><risdate>2021</risdate><spage>1</spage><epage>10</epage><pages>1-10</pages><eissn>2641-9874</eissn><eisbn>9781665403252</eisbn><eisbn>166540325X</eisbn><abstract>Offloading the 3D object detection from autonomous vehicles to MEC is appealing because of the gains on quality, latency, and energy. However, detection requests lead to repetitive computations since the multitudinous requests share approximate detection results. It is crucial to reduce such fuzzy redundancy by reusing the previous results. A key challenge is that the requests mapping to the reusable result are only similar but not identical. An efficient method for similarity matching is needed to justify the use case. To this end, by taking advantage of TCAM's ap-proximate matching capability and NMC's computing efficiency, we design SODA, a first-of-its-kind hardware accelerator which sits in the mobile base stations between autonomous vehicles and MEC servers. We design efficient feature encoding and partition algorithms for SODA to ensure the quality of the similarity matching and result reuse. Our evaluation shows that SODA significantly improves the system performance and the detection results exceed the accuracy requirements on the subject matter, qualifying SODA as a practical domain-specific solution.</abstract><pub>IEEE</pub><doi>10.1109/INFOCOM42981.2021.9488833</doi><tpages>10</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2641-9874
ispartof IEEE INFOCOM 2021 - IEEE Conference on Computer Communications, 2021, p.1-10
issn 2641-9874
language eng
recordid cdi_ieee_primary_9488833
source IEEE Xplore All Conference Series
subjects Encoding
Image edge detection
Object detection
Partitioning algorithms
Redundancy
System performance
Three-dimensional displays
title SODA: Similar 3D Object Detection Accelerator at Network Edge for Autonomous Driving
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A02%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=SODA:%20Similar%203D%20Object%20Detection%20Accelerator%20at%20Network%20Edge%20for%20Autonomous%20Driving&rft.btitle=IEEE%20INFOCOM%202021%20-%20IEEE%20Conference%20on%20Computer%20Communications&rft.au=Xu,%20Wenquan&rft.date=2021-05-10&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.eissn=2641-9874&rft_id=info:doi/10.1109/INFOCOM42981.2021.9488833&rft.eisbn=9781665403252&rft.eisbn_list=166540325X&rft_dat=%3Cieee_CHZPO%3E9488833%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-373d86cf1a896dac1939855a37bbe2f67a1f93adea81b547d5993471b4b798893%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9488833&rfr_iscdi=true