Loading…

GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels

Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to coll...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on cybernetics 2023-01, Vol.53 (1), p.236-247
Main Authors: Liu, Jiabin, Hang, Hanyuan, Wang, Bo, Li, Biao, Wang, Huadong, Tian, Yingjie, Shi, Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533
container_end_page 247
container_issue 1
container_start_page 236
container_title IEEE transactions on cybernetics
container_volume 53
creator Liu, Jiabin
Hang, Hanyuan
Wang, Bo
Li, Biao
Wang, Huadong
Tian, Yingjie
Shi, Yong
description Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to collect CLs compared with ordinary labels, the less informative signal in the complementary supervision is less helpful to learn competent feature representation. Consequently, the final classifier's performance greatly deteriorates. In this article, we leverage generative adversarial networks (GANs) to derive an algorithm GAN-CL to effectively learn from CLs. In addition to the role in original GAN, the discriminator also serves as a normal classifier in GAN-CL, with the objective constructed partly with the complementary information. To further prove the effectiveness of our schema, we study the global optimality of both generator and discriminator for the GAN-CL under mild assumptions. We conduct extensive experiments on benchmark image datasets using deep models, to demonstrate the compelling improvements, compared with state-of-the-art CL learning approaches.
doi_str_mv 10.1109/TCYB.2021.3089337
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9489374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9489374</ieee_id><sourcerecordid>2757178589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKrU_QARZ8OJlaz43ibe6aBWWeqkHTyHbncjqftRkq_jvTWntwVwSJs87zDwInRM8IQTrm0X-ejehmJIJw0ozJg_QKSWZSimV4nD_zuQJGofwjuNRsaTVMTphnErMOT5F89l0nubFbTKDDrwd6i9IptUX-GB9bZtkDsN37z9C4nqfFGB9V3dvyYPv2yTv21UDLXSD9T9JYUtowhk6crYJMN7dI_TycL_IH9PiefaUT4t0yTgfUl1iwrmomCaZZk6VmlTKZtzyTFfCSeo4E7q0lYhjSgKKKQZKVo6DI04wNkLX274r33-uIQymrcMSmsZ20K-DoUJQHVOaRvTqH_rer30XpzNRlCRSiahvhMiWWvo-BA_OrHzdxsUMwWbj22x8m41vs_MdM5e7zuuyhWqf-LMbgYstUAPA_lvzGJec_QLQp4FS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757178589</pqid></control><display><type>article</type><title>GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Jiabin ; Hang, Hanyuan ; Wang, Bo ; Li, Biao ; Wang, Huadong ; Tian, Yingjie ; Shi, Yong</creator><creatorcontrib>Liu, Jiabin ; Hang, Hanyuan ; Wang, Bo ; Li, Biao ; Wang, Huadong ; Tian, Yingjie ; Shi, Yong</creatorcontrib><description>Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to collect CLs compared with ordinary labels, the less informative signal in the complementary supervision is less helpful to learn competent feature representation. Consequently, the final classifier's performance greatly deteriorates. In this article, we leverage generative adversarial networks (GANs) to derive an algorithm GAN-CL to effectively learn from CLs. In addition to the role in original GAN, the discriminator also serves as a normal classifier in GAN-CL, with the objective constructed partly with the complementary information. To further prove the effectiveness of our schema, we study the global optimality of both generator and discriminator for the GAN-CL under mild assumptions. We conduct extensive experiments on benchmark image datasets using deep models, to demonstrate the compelling improvements, compared with state-of-the-art CL learning approaches.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3089337</identifier><identifier>PMID: 34270440</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Classifiers ; Complementary label (CL) learning ; Discriminators ; Economics ; Generative adversarial networks ; generative adversarial networks (GANs) ; Generators ; Labels ; Supervised learning ; Task analysis ; Training ; Training data ; weakly supervised learning</subject><ispartof>IEEE transactions on cybernetics, 2023-01, Vol.53 (1), p.236-247</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533</cites><orcidid>0000-0001-6914-8941 ; 0000-0002-8054-8185 ; 0000-0001-7974-1079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9489374$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34270440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>Hang, Hanyuan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Wang, Huadong</creatorcontrib><creatorcontrib>Tian, Yingjie</creatorcontrib><creatorcontrib>Shi, Yong</creatorcontrib><title>GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to collect CLs compared with ordinary labels, the less informative signal in the complementary supervision is less helpful to learn competent feature representation. Consequently, the final classifier's performance greatly deteriorates. In this article, we leverage generative adversarial networks (GANs) to derive an algorithm GAN-CL to effectively learn from CLs. In addition to the role in original GAN, the discriminator also serves as a normal classifier in GAN-CL, with the objective constructed partly with the complementary information. To further prove the effectiveness of our schema, we study the global optimality of both generator and discriminator for the GAN-CL under mild assumptions. We conduct extensive experiments on benchmark image datasets using deep models, to demonstrate the compelling improvements, compared with state-of-the-art CL learning approaches.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Complementary label (CL) learning</subject><subject>Discriminators</subject><subject>Economics</subject><subject>Generative adversarial networks</subject><subject>generative adversarial networks (GANs)</subject><subject>Generators</subject><subject>Labels</subject><subject>Supervised learning</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><subject>weakly supervised learning</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoKrU_QARZ8OJlaz43ibe6aBWWeqkHTyHbncjqftRkq_jvTWntwVwSJs87zDwInRM8IQTrm0X-ejehmJIJw0ozJg_QKSWZSimV4nD_zuQJGofwjuNRsaTVMTphnErMOT5F89l0nubFbTKDDrwd6i9IptUX-GB9bZtkDsN37z9C4nqfFGB9V3dvyYPv2yTv21UDLXSD9T9JYUtowhk6crYJMN7dI_TycL_IH9PiefaUT4t0yTgfUl1iwrmomCaZZk6VmlTKZtzyTFfCSeo4E7q0lYhjSgKKKQZKVo6DI04wNkLX274r33-uIQymrcMSmsZ20K-DoUJQHVOaRvTqH_rer30XpzNRlCRSiahvhMiWWvo-BA_OrHzdxsUMwWbj22x8m41vs_MdM5e7zuuyhWqf-LMbgYstUAPA_lvzGJec_QLQp4FS</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Liu, Jiabin</creator><creator>Hang, Hanyuan</creator><creator>Wang, Bo</creator><creator>Li, Biao</creator><creator>Wang, Huadong</creator><creator>Tian, Yingjie</creator><creator>Shi, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6914-8941</orcidid><orcidid>https://orcid.org/0000-0002-8054-8185</orcidid><orcidid>https://orcid.org/0000-0001-7974-1079</orcidid></search><sort><creationdate>202301</creationdate><title>GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels</title><author>Liu, Jiabin ; Hang, Hanyuan ; Wang, Bo ; Li, Biao ; Wang, Huadong ; Tian, Yingjie ; Shi, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Complementary label (CL) learning</topic><topic>Discriminators</topic><topic>Economics</topic><topic>Generative adversarial networks</topic><topic>generative adversarial networks (GANs)</topic><topic>Generators</topic><topic>Labels</topic><topic>Supervised learning</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><topic>weakly supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>Hang, Hanyuan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Wang, Huadong</creatorcontrib><creatorcontrib>Tian, Yingjie</creatorcontrib><creatorcontrib>Shi, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiabin</au><au>Hang, Hanyuan</au><au>Wang, Bo</au><au>Li, Biao</au><au>Wang, Huadong</au><au>Tian, Yingjie</au><au>Shi, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2023-01</date><risdate>2023</risdate><volume>53</volume><issue>1</issue><spage>236</spage><epage>247</epage><pages>236-247</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to collect CLs compared with ordinary labels, the less informative signal in the complementary supervision is less helpful to learn competent feature representation. Consequently, the final classifier's performance greatly deteriorates. In this article, we leverage generative adversarial networks (GANs) to derive an algorithm GAN-CL to effectively learn from CLs. In addition to the role in original GAN, the discriminator also serves as a normal classifier in GAN-CL, with the objective constructed partly with the complementary information. To further prove the effectiveness of our schema, we study the global optimality of both generator and discriminator for the GAN-CL under mild assumptions. We conduct extensive experiments on benchmark image datasets using deep models, to demonstrate the compelling improvements, compared with state-of-the-art CL learning approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34270440</pmid><doi>10.1109/TCYB.2021.3089337</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6914-8941</orcidid><orcidid>https://orcid.org/0000-0002-8054-8185</orcidid><orcidid>https://orcid.org/0000-0001-7974-1079</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2168-2267
ispartof IEEE transactions on cybernetics, 2023-01, Vol.53 (1), p.236-247
issn 2168-2267
2168-2275
language eng
recordid cdi_ieee_primary_9489374
source IEEE Electronic Library (IEL) Journals
subjects Algorithms
Classifiers
Complementary label (CL) learning
Discriminators
Economics
Generative adversarial networks
generative adversarial networks (GANs)
Generators
Labels
Supervised learning
Task analysis
Training
Training data
weakly supervised learning
title GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GAN-CL:%20Generative%20Adversarial%20Networks%20for%20Learning%20From%20Complementary%20Labels&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Liu,%20Jiabin&rft.date=2023-01&rft.volume=53&rft.issue=1&rft.spage=236&rft.epage=247&rft.pages=236-247&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3089337&rft_dat=%3Cproquest_ieee_%3E2757178589%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2757178589&rft_id=info:pmid/34270440&rft_ieee_id=9489374&rfr_iscdi=true