Loading…
GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels
Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to coll...
Saved in:
Published in: | IEEE transactions on cybernetics 2023-01, Vol.53 (1), p.236-247 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533 |
container_end_page | 247 |
container_issue | 1 |
container_start_page | 236 |
container_title | IEEE transactions on cybernetics |
container_volume | 53 |
creator | Liu, Jiabin Hang, Hanyuan Wang, Bo Li, Biao Wang, Huadong Tian, Yingjie Shi, Yong |
description | Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to collect CLs compared with ordinary labels, the less informative signal in the complementary supervision is less helpful to learn competent feature representation. Consequently, the final classifier's performance greatly deteriorates. In this article, we leverage generative adversarial networks (GANs) to derive an algorithm GAN-CL to effectively learn from CLs. In addition to the role in original GAN, the discriminator also serves as a normal classifier in GAN-CL, with the objective constructed partly with the complementary information. To further prove the effectiveness of our schema, we study the global optimality of both generator and discriminator for the GAN-CL under mild assumptions. We conduct extensive experiments on benchmark image datasets using deep models, to demonstrate the compelling improvements, compared with state-of-the-art CL learning approaches. |
doi_str_mv | 10.1109/TCYB.2021.3089337 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9489374</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9489374</ieee_id><sourcerecordid>2757178589</sourcerecordid><originalsourceid>FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533</originalsourceid><addsrcrecordid>eNpdkE1LAzEQhoMoKrU_QARZ8OJlaz43ibe6aBWWeqkHTyHbncjqftRkq_jvTWntwVwSJs87zDwInRM8IQTrm0X-ejehmJIJw0ozJg_QKSWZSimV4nD_zuQJGofwjuNRsaTVMTphnErMOT5F89l0nubFbTKDDrwd6i9IptUX-GB9bZtkDsN37z9C4nqfFGB9V3dvyYPv2yTv21UDLXSD9T9JYUtowhk6crYJMN7dI_TycL_IH9PiefaUT4t0yTgfUl1iwrmomCaZZk6VmlTKZtzyTFfCSeo4E7q0lYhjSgKKKQZKVo6DI04wNkLX274r33-uIQymrcMSmsZ20K-DoUJQHVOaRvTqH_rer30XpzNRlCRSiahvhMiWWvo-BA_OrHzdxsUMwWbj22x8m41vs_MdM5e7zuuyhWqf-LMbgYstUAPA_lvzGJec_QLQp4FS</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2757178589</pqid></control><display><type>article</type><title>GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Liu, Jiabin ; Hang, Hanyuan ; Wang, Bo ; Li, Biao ; Wang, Huadong ; Tian, Yingjie ; Shi, Yong</creator><creatorcontrib>Liu, Jiabin ; Hang, Hanyuan ; Wang, Bo ; Li, Biao ; Wang, Huadong ; Tian, Yingjie ; Shi, Yong</creatorcontrib><description>Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to collect CLs compared with ordinary labels, the less informative signal in the complementary supervision is less helpful to learn competent feature representation. Consequently, the final classifier's performance greatly deteriorates. In this article, we leverage generative adversarial networks (GANs) to derive an algorithm GAN-CL to effectively learn from CLs. In addition to the role in original GAN, the discriminator also serves as a normal classifier in GAN-CL, with the objective constructed partly with the complementary information. To further prove the effectiveness of our schema, we study the global optimality of both generator and discriminator for the GAN-CL under mild assumptions. We conduct extensive experiments on benchmark image datasets using deep models, to demonstrate the compelling improvements, compared with state-of-the-art CL learning approaches.</description><identifier>ISSN: 2168-2267</identifier><identifier>EISSN: 2168-2275</identifier><identifier>DOI: 10.1109/TCYB.2021.3089337</identifier><identifier>PMID: 34270440</identifier><identifier>CODEN: ITCEB8</identifier><language>eng</language><publisher>United States: IEEE</publisher><subject>Algorithms ; Classifiers ; Complementary label (CL) learning ; Discriminators ; Economics ; Generative adversarial networks ; generative adversarial networks (GANs) ; Generators ; Labels ; Supervised learning ; Task analysis ; Training ; Training data ; weakly supervised learning</subject><ispartof>IEEE transactions on cybernetics, 2023-01, Vol.53 (1), p.236-247</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533</cites><orcidid>0000-0001-6914-8941 ; 0000-0002-8054-8185 ; 0000-0001-7974-1079</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9489374$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,27901,27902,54771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/34270440$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>Hang, Hanyuan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Wang, Huadong</creatorcontrib><creatorcontrib>Tian, Yingjie</creatorcontrib><creatorcontrib>Shi, Yong</creatorcontrib><title>GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels</title><title>IEEE transactions on cybernetics</title><addtitle>TCYB</addtitle><addtitle>IEEE Trans Cybern</addtitle><description>Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to collect CLs compared with ordinary labels, the less informative signal in the complementary supervision is less helpful to learn competent feature representation. Consequently, the final classifier's performance greatly deteriorates. In this article, we leverage generative adversarial networks (GANs) to derive an algorithm GAN-CL to effectively learn from CLs. In addition to the role in original GAN, the discriminator also serves as a normal classifier in GAN-CL, with the objective constructed partly with the complementary information. To further prove the effectiveness of our schema, we study the global optimality of both generator and discriminator for the GAN-CL under mild assumptions. We conduct extensive experiments on benchmark image datasets using deep models, to demonstrate the compelling improvements, compared with state-of-the-art CL learning approaches.</description><subject>Algorithms</subject><subject>Classifiers</subject><subject>Complementary label (CL) learning</subject><subject>Discriminators</subject><subject>Economics</subject><subject>Generative adversarial networks</subject><subject>generative adversarial networks (GANs)</subject><subject>Generators</subject><subject>Labels</subject><subject>Supervised learning</subject><subject>Task analysis</subject><subject>Training</subject><subject>Training data</subject><subject>weakly supervised learning</subject><issn>2168-2267</issn><issn>2168-2275</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNpdkE1LAzEQhoMoKrU_QARZ8OJlaz43ibe6aBWWeqkHTyHbncjqftRkq_jvTWntwVwSJs87zDwInRM8IQTrm0X-ejehmJIJw0ozJg_QKSWZSimV4nD_zuQJGofwjuNRsaTVMTphnErMOT5F89l0nubFbTKDDrwd6i9IptUX-GB9bZtkDsN37z9C4nqfFGB9V3dvyYPv2yTv21UDLXSD9T9JYUtowhk6crYJMN7dI_TycL_IH9PiefaUT4t0yTgfUl1iwrmomCaZZk6VmlTKZtzyTFfCSeo4E7q0lYhjSgKKKQZKVo6DI04wNkLX274r33-uIQymrcMSmsZ20K-DoUJQHVOaRvTqH_rer30XpzNRlCRSiahvhMiWWvo-BA_OrHzdxsUMwWbj22x8m41vs_MdM5e7zuuyhWqf-LMbgYstUAPA_lvzGJec_QLQp4FS</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Liu, Jiabin</creator><creator>Hang, Hanyuan</creator><creator>Wang, Bo</creator><creator>Li, Biao</creator><creator>Wang, Huadong</creator><creator>Tian, Yingjie</creator><creator>Shi, Yong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0001-6914-8941</orcidid><orcidid>https://orcid.org/0000-0002-8054-8185</orcidid><orcidid>https://orcid.org/0000-0001-7974-1079</orcidid></search><sort><creationdate>202301</creationdate><title>GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels</title><author>Liu, Jiabin ; Hang, Hanyuan ; Wang, Bo ; Li, Biao ; Wang, Huadong ; Tian, Yingjie ; Shi, Yong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Classifiers</topic><topic>Complementary label (CL) learning</topic><topic>Discriminators</topic><topic>Economics</topic><topic>Generative adversarial networks</topic><topic>generative adversarial networks (GANs)</topic><topic>Generators</topic><topic>Labels</topic><topic>Supervised learning</topic><topic>Task analysis</topic><topic>Training</topic><topic>Training data</topic><topic>weakly supervised learning</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Jiabin</creatorcontrib><creatorcontrib>Hang, Hanyuan</creatorcontrib><creatorcontrib>Wang, Bo</creatorcontrib><creatorcontrib>Li, Biao</creatorcontrib><creatorcontrib>Wang, Huadong</creatorcontrib><creatorcontrib>Tian, Yingjie</creatorcontrib><creatorcontrib>Shi, Yong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><jtitle>IEEE transactions on cybernetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Jiabin</au><au>Hang, Hanyuan</au><au>Wang, Bo</au><au>Li, Biao</au><au>Wang, Huadong</au><au>Tian, Yingjie</au><au>Shi, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels</atitle><jtitle>IEEE transactions on cybernetics</jtitle><stitle>TCYB</stitle><addtitle>IEEE Trans Cybern</addtitle><date>2023-01</date><risdate>2023</risdate><volume>53</volume><issue>1</issue><spage>236</spage><epage>247</epage><pages>236-247</pages><issn>2168-2267</issn><eissn>2168-2275</eissn><coden>ITCEB8</coden><abstract>Learning from complementary labels (CLs) is a useful learning paradigm, where the CL specifies the classes that the instance does not belong to, instead of providing the ground truth as in the ordinary supervised learning scenario. In general, although it is less laborious and more efficient to collect CLs compared with ordinary labels, the less informative signal in the complementary supervision is less helpful to learn competent feature representation. Consequently, the final classifier's performance greatly deteriorates. In this article, we leverage generative adversarial networks (GANs) to derive an algorithm GAN-CL to effectively learn from CLs. In addition to the role in original GAN, the discriminator also serves as a normal classifier in GAN-CL, with the objective constructed partly with the complementary information. To further prove the effectiveness of our schema, we study the global optimality of both generator and discriminator for the GAN-CL under mild assumptions. We conduct extensive experiments on benchmark image datasets using deep models, to demonstrate the compelling improvements, compared with state-of-the-art CL learning approaches.</abstract><cop>United States</cop><pub>IEEE</pub><pmid>34270440</pmid><doi>10.1109/TCYB.2021.3089337</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0001-6914-8941</orcidid><orcidid>https://orcid.org/0000-0002-8054-8185</orcidid><orcidid>https://orcid.org/0000-0001-7974-1079</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2168-2267 |
ispartof | IEEE transactions on cybernetics, 2023-01, Vol.53 (1), p.236-247 |
issn | 2168-2267 2168-2275 |
language | eng |
recordid | cdi_ieee_primary_9489374 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Algorithms Classifiers Complementary label (CL) learning Discriminators Economics Generative adversarial networks generative adversarial networks (GANs) Generators Labels Supervised learning Task analysis Training Training data weakly supervised learning |
title | GAN-CL: Generative Adversarial Networks for Learning From Complementary Labels |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T12%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=GAN-CL:%20Generative%20Adversarial%20Networks%20for%20Learning%20From%20Complementary%20Labels&rft.jtitle=IEEE%20transactions%20on%20cybernetics&rft.au=Liu,%20Jiabin&rft.date=2023-01&rft.volume=53&rft.issue=1&rft.spage=236&rft.epage=247&rft.pages=236-247&rft.issn=2168-2267&rft.eissn=2168-2275&rft.coden=ITCEB8&rft_id=info:doi/10.1109/TCYB.2021.3089337&rft_dat=%3Cproquest_ieee_%3E2757178589%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c344t-9b01445d391693f8b91d8a64a469d5f72f4359bad570471e8383e87df4ef1f533%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2757178589&rft_id=info:pmid/34270440&rft_ieee_id=9489374&rfr_iscdi=true |