Loading…
Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites
Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed e...
Saved in:
Published in: | IEEE transactions on nanotechnology 2021, Vol.20, p.584-591 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3 |
---|---|
cites | cdi_FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3 |
container_end_page | 591 |
container_issue | |
container_start_page | 584 |
container_title | IEEE transactions on nanotechnology |
container_volume | 20 |
creator | Cook, Jordan Hones, Harrison Mahon, Jacob Yu, Lei Krchnavek, Robert Xue, Wei |
description | Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed exceptional performance as dielectrics, with PI as the stronger material. Significant dielectric strength improvement was observed for samples tested in the cryogenic environment when compared to those tested at the room temperature. The PI exhibited a high dielectric strength of 347 ± 67 kV/mm at 92 K, while its nanocomposites were in the range of 261-280 kV/mm. The performance change of these dielectrics was influenced by a number of factors including the density of free charge carriers, localized heat generation and material degradation, thermal contraction of polymers, and polymer-nanoparticle interfacial changes at cryogenic temperatures. The findings from this research can help advance the understanding of breakdown failures in cryogenic dielectrics. |
doi_str_mv | 10.1109/TNANO.2021.3098233 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9492003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9492003</ieee_id><sourcerecordid>2560907915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoWnaH2g3gm6ahdORZNnWMiR9BEKSRQrdCVseg0JsuZKzyN_HedDVDJd7ZuAQ8sxgzBio981yslyNOXA2FqAyLsQNGTAVswggk7f9LkUSMS5_78lDCFsAliYyGxC9wbpFn3d7j9EMW2xKbDo6s7hD03lr6Nq7vtBZDNRVdO12B1vbEunbej6ieVOeo_waTUZ0mTfOuLp1wXYYHsldle8CPl3nkPx8fmym39Fi9TWfThaR4Up2kZGVFAoSTFSmqrhQhcCiMBlXIhEGU8Y4xmC4TEDFgBD3OecxlizNVFmiGJLXy93Wu789hk5v3d43_Ut9hiBVvYIh4ZeW8S4Ej5Vuva1zf9AM9EmkPovUJ5H6KrKHXi6QRcR_QMWKAwhxBJdFbjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560907915</pqid></control><display><type>article</type><title>Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cook, Jordan ; Hones, Harrison ; Mahon, Jacob ; Yu, Lei ; Krchnavek, Robert ; Xue, Wei</creator><creatorcontrib>Cook, Jordan ; Hones, Harrison ; Mahon, Jacob ; Yu, Lei ; Krchnavek, Robert ; Xue, Wei</creatorcontrib><description>Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed exceptional performance as dielectrics, with PI as the stronger material. Significant dielectric strength improvement was observed for samples tested in the cryogenic environment when compared to those tested at the room temperature. The PI exhibited a high dielectric strength of 347 ± 67 kV/mm at 92 K, while its nanocomposites were in the range of 261-280 kV/mm. The performance change of these dielectrics was influenced by a number of factors including the density of free charge carriers, localized heat generation and material degradation, thermal contraction of polymers, and polymer-nanoparticle interfacial changes at cryogenic temperatures. The findings from this research can help advance the understanding of breakdown failures in cryogenic dielectrics.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2021.3098233</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cables ; Charge density ; Cryogenic engineering ; Cryogenic temperature ; Cryogenics ; Current carriers ; Dielectric breakdown ; Dielectric properties ; Dielectric strength ; Dielectrics ; failure analysis ; Heat generation ; High temperature superconductors ; Insulators ; Nanocomposites ; Nanoparticles ; Polyamide resins ; Polyimide resins ; polymer ; Polymers ; Room temperature ; Superconducting cables ; Temperature ; Temperature dependence ; Testing ; Thermal contraction</subject><ispartof>IEEE transactions on nanotechnology, 2021, Vol.20, p.584-591</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3</citedby><cites>FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3</cites><orcidid>0000-0001-5069-6243 ; 0000-0002-3145-270X ; 0000-0001-6550-5366 ; 0000-0002-4179-7541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9492003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Cook, Jordan</creatorcontrib><creatorcontrib>Hones, Harrison</creatorcontrib><creatorcontrib>Mahon, Jacob</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Krchnavek, Robert</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><title>Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed exceptional performance as dielectrics, with PI as the stronger material. Significant dielectric strength improvement was observed for samples tested in the cryogenic environment when compared to those tested at the room temperature. The PI exhibited a high dielectric strength of 347 ± 67 kV/mm at 92 K, while its nanocomposites were in the range of 261-280 kV/mm. The performance change of these dielectrics was influenced by a number of factors including the density of free charge carriers, localized heat generation and material degradation, thermal contraction of polymers, and polymer-nanoparticle interfacial changes at cryogenic temperatures. The findings from this research can help advance the understanding of breakdown failures in cryogenic dielectrics.</description><subject>Cables</subject><subject>Charge density</subject><subject>Cryogenic engineering</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>Current carriers</subject><subject>Dielectric breakdown</subject><subject>Dielectric properties</subject><subject>Dielectric strength</subject><subject>Dielectrics</subject><subject>failure analysis</subject><subject>Heat generation</subject><subject>High temperature superconductors</subject><subject>Insulators</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polyamide resins</subject><subject>Polyimide resins</subject><subject>polymer</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Superconducting cables</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Testing</subject><subject>Thermal contraction</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtqwzAQRUVpoWnaH2g3gm6ahdORZNnWMiR9BEKSRQrdCVseg0JsuZKzyN_HedDVDJd7ZuAQ8sxgzBio981yslyNOXA2FqAyLsQNGTAVswggk7f9LkUSMS5_78lDCFsAliYyGxC9wbpFn3d7j9EMW2xKbDo6s7hD03lr6Nq7vtBZDNRVdO12B1vbEunbej6ieVOeo_waTUZ0mTfOuLp1wXYYHsldle8CPl3nkPx8fmym39Fi9TWfThaR4Up2kZGVFAoSTFSmqrhQhcCiMBlXIhEGU8Y4xmC4TEDFgBD3OecxlizNVFmiGJLXy93Wu789hk5v3d43_Ut9hiBVvYIh4ZeW8S4Ej5Vuva1zf9AM9EmkPovUJ5H6KrKHXi6QRcR_QMWKAwhxBJdFbjo</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Cook, Jordan</creator><creator>Hones, Harrison</creator><creator>Mahon, Jacob</creator><creator>Yu, Lei</creator><creator>Krchnavek, Robert</creator><creator>Xue, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5069-6243</orcidid><orcidid>https://orcid.org/0000-0002-3145-270X</orcidid><orcidid>https://orcid.org/0000-0001-6550-5366</orcidid><orcidid>https://orcid.org/0000-0002-4179-7541</orcidid></search><sort><creationdate>2021</creationdate><title>Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites</title><author>Cook, Jordan ; Hones, Harrison ; Mahon, Jacob ; Yu, Lei ; Krchnavek, Robert ; Xue, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cables</topic><topic>Charge density</topic><topic>Cryogenic engineering</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>Current carriers</topic><topic>Dielectric breakdown</topic><topic>Dielectric properties</topic><topic>Dielectric strength</topic><topic>Dielectrics</topic><topic>failure analysis</topic><topic>Heat generation</topic><topic>High temperature superconductors</topic><topic>Insulators</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polyamide resins</topic><topic>Polyimide resins</topic><topic>polymer</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Superconducting cables</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Testing</topic><topic>Thermal contraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Jordan</creatorcontrib><creatorcontrib>Hones, Harrison</creatorcontrib><creatorcontrib>Mahon, Jacob</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Krchnavek, Robert</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Jordan</au><au>Hones, Harrison</au><au>Mahon, Jacob</au><au>Yu, Lei</au><au>Krchnavek, Robert</au><au>Xue, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2021</date><risdate>2021</risdate><volume>20</volume><spage>584</spage><epage>591</epage><pages>584-591</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed exceptional performance as dielectrics, with PI as the stronger material. Significant dielectric strength improvement was observed for samples tested in the cryogenic environment when compared to those tested at the room temperature. The PI exhibited a high dielectric strength of 347 ± 67 kV/mm at 92 K, while its nanocomposites were in the range of 261-280 kV/mm. The performance change of these dielectrics was influenced by a number of factors including the density of free charge carriers, localized heat generation and material degradation, thermal contraction of polymers, and polymer-nanoparticle interfacial changes at cryogenic temperatures. The findings from this research can help advance the understanding of breakdown failures in cryogenic dielectrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2021.3098233</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5069-6243</orcidid><orcidid>https://orcid.org/0000-0002-3145-270X</orcidid><orcidid>https://orcid.org/0000-0001-6550-5366</orcidid><orcidid>https://orcid.org/0000-0002-4179-7541</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2021, Vol.20, p.584-591 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_ieee_primary_9492003 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Cables Charge density Cryogenic engineering Cryogenic temperature Cryogenics Current carriers Dielectric breakdown Dielectric properties Dielectric strength Dielectrics failure analysis Heat generation High temperature superconductors Insulators Nanocomposites Nanoparticles Polyamide resins Polyimide resins polymer Polymers Room temperature Superconducting cables Temperature Temperature dependence Testing Thermal contraction |
title | Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Dependent%20Dielectric%20Properties%20of%20Polyimide%20(PI)%20and%20Polyamide%20(PA)%20Nanocomposites&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Cook,%20Jordan&rft.date=2021&rft.volume=20&rft.spage=584&rft.epage=591&rft.pages=584-591&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2021.3098233&rft_dat=%3Cproquest_ieee_%3E2560907915%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560907915&rft_id=info:pmid/&rft_ieee_id=9492003&rfr_iscdi=true |