Loading…

Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites

Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed e...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2021, Vol.20, p.584-591
Main Authors: Cook, Jordan, Hones, Harrison, Mahon, Jacob, Yu, Lei, Krchnavek, Robert, Xue, Wei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3
cites cdi_FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3
container_end_page 591
container_issue
container_start_page 584
container_title IEEE transactions on nanotechnology
container_volume 20
creator Cook, Jordan
Hones, Harrison
Mahon, Jacob
Yu, Lei
Krchnavek, Robert
Xue, Wei
description Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed exceptional performance as dielectrics, with PI as the stronger material. Significant dielectric strength improvement was observed for samples tested in the cryogenic environment when compared to those tested at the room temperature. The PI exhibited a high dielectric strength of 347 ± 67 kV/mm at 92 K, while its nanocomposites were in the range of 261-280 kV/mm. The performance change of these dielectrics was influenced by a number of factors including the density of free charge carriers, localized heat generation and material degradation, thermal contraction of polymers, and polymer-nanoparticle interfacial changes at cryogenic temperatures. The findings from this research can help advance the understanding of breakdown failures in cryogenic dielectrics.
doi_str_mv 10.1109/TNANO.2021.3098233
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9492003</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9492003</ieee_id><sourcerecordid>2560907915</sourcerecordid><originalsourceid>FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3</originalsourceid><addsrcrecordid>eNo9kMtqwzAQRUVpoWnaH2g3gm6ahdORZNnWMiR9BEKSRQrdCVseg0JsuZKzyN_HedDVDJd7ZuAQ8sxgzBio981yslyNOXA2FqAyLsQNGTAVswggk7f9LkUSMS5_78lDCFsAliYyGxC9wbpFn3d7j9EMW2xKbDo6s7hD03lr6Nq7vtBZDNRVdO12B1vbEunbej6ieVOeo_waTUZ0mTfOuLp1wXYYHsldle8CPl3nkPx8fmym39Fi9TWfThaR4Up2kZGVFAoSTFSmqrhQhcCiMBlXIhEGU8Y4xmC4TEDFgBD3OecxlizNVFmiGJLXy93Wu789hk5v3d43_Ut9hiBVvYIh4ZeW8S4Ej5Vuva1zf9AM9EmkPovUJ5H6KrKHXi6QRcR_QMWKAwhxBJdFbjo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560907915</pqid></control><display><type>article</type><title>Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Cook, Jordan ; Hones, Harrison ; Mahon, Jacob ; Yu, Lei ; Krchnavek, Robert ; Xue, Wei</creator><creatorcontrib>Cook, Jordan ; Hones, Harrison ; Mahon, Jacob ; Yu, Lei ; Krchnavek, Robert ; Xue, Wei</creatorcontrib><description>Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed exceptional performance as dielectrics, with PI as the stronger material. Significant dielectric strength improvement was observed for samples tested in the cryogenic environment when compared to those tested at the room temperature. The PI exhibited a high dielectric strength of 347 ± 67 kV/mm at 92 K, while its nanocomposites were in the range of 261-280 kV/mm. The performance change of these dielectrics was influenced by a number of factors including the density of free charge carriers, localized heat generation and material degradation, thermal contraction of polymers, and polymer-nanoparticle interfacial changes at cryogenic temperatures. The findings from this research can help advance the understanding of breakdown failures in cryogenic dielectrics.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2021.3098233</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Cables ; Charge density ; Cryogenic engineering ; Cryogenic temperature ; Cryogenics ; Current carriers ; Dielectric breakdown ; Dielectric properties ; Dielectric strength ; Dielectrics ; failure analysis ; Heat generation ; High temperature superconductors ; Insulators ; Nanocomposites ; Nanoparticles ; Polyamide resins ; Polyimide resins ; polymer ; Polymers ; Room temperature ; Superconducting cables ; Temperature ; Temperature dependence ; Testing ; Thermal contraction</subject><ispartof>IEEE transactions on nanotechnology, 2021, Vol.20, p.584-591</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3</citedby><cites>FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3</cites><orcidid>0000-0001-5069-6243 ; 0000-0002-3145-270X ; 0000-0001-6550-5366 ; 0000-0002-4179-7541</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9492003$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,776,780,4010,27900,27901,27902,54771</link.rule.ids></links><search><creatorcontrib>Cook, Jordan</creatorcontrib><creatorcontrib>Hones, Harrison</creatorcontrib><creatorcontrib>Mahon, Jacob</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Krchnavek, Robert</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><title>Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed exceptional performance as dielectrics, with PI as the stronger material. Significant dielectric strength improvement was observed for samples tested in the cryogenic environment when compared to those tested at the room temperature. The PI exhibited a high dielectric strength of 347 ± 67 kV/mm at 92 K, while its nanocomposites were in the range of 261-280 kV/mm. The performance change of these dielectrics was influenced by a number of factors including the density of free charge carriers, localized heat generation and material degradation, thermal contraction of polymers, and polymer-nanoparticle interfacial changes at cryogenic temperatures. The findings from this research can help advance the understanding of breakdown failures in cryogenic dielectrics.</description><subject>Cables</subject><subject>Charge density</subject><subject>Cryogenic engineering</subject><subject>Cryogenic temperature</subject><subject>Cryogenics</subject><subject>Current carriers</subject><subject>Dielectric breakdown</subject><subject>Dielectric properties</subject><subject>Dielectric strength</subject><subject>Dielectrics</subject><subject>failure analysis</subject><subject>Heat generation</subject><subject>High temperature superconductors</subject><subject>Insulators</subject><subject>Nanocomposites</subject><subject>Nanoparticles</subject><subject>Polyamide resins</subject><subject>Polyimide resins</subject><subject>polymer</subject><subject>Polymers</subject><subject>Room temperature</subject><subject>Superconducting cables</subject><subject>Temperature</subject><subject>Temperature dependence</subject><subject>Testing</subject><subject>Thermal contraction</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kMtqwzAQRUVpoWnaH2g3gm6ahdORZNnWMiR9BEKSRQrdCVseg0JsuZKzyN_HedDVDJd7ZuAQ8sxgzBio981yslyNOXA2FqAyLsQNGTAVswggk7f9LkUSMS5_78lDCFsAliYyGxC9wbpFn3d7j9EMW2xKbDo6s7hD03lr6Nq7vtBZDNRVdO12B1vbEunbej6ieVOeo_waTUZ0mTfOuLp1wXYYHsldle8CPl3nkPx8fmym39Fi9TWfThaR4Up2kZGVFAoSTFSmqrhQhcCiMBlXIhEGU8Y4xmC4TEDFgBD3OecxlizNVFmiGJLXy93Wu789hk5v3d43_Ut9hiBVvYIh4ZeW8S4Ej5Vuva1zf9AM9EmkPovUJ5H6KrKHXi6QRcR_QMWKAwhxBJdFbjo</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Cook, Jordan</creator><creator>Hones, Harrison</creator><creator>Mahon, Jacob</creator><creator>Yu, Lei</creator><creator>Krchnavek, Robert</creator><creator>Xue, Wei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5069-6243</orcidid><orcidid>https://orcid.org/0000-0002-3145-270X</orcidid><orcidid>https://orcid.org/0000-0001-6550-5366</orcidid><orcidid>https://orcid.org/0000-0002-4179-7541</orcidid></search><sort><creationdate>2021</creationdate><title>Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites</title><author>Cook, Jordan ; Hones, Harrison ; Mahon, Jacob ; Yu, Lei ; Krchnavek, Robert ; Xue, Wei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cables</topic><topic>Charge density</topic><topic>Cryogenic engineering</topic><topic>Cryogenic temperature</topic><topic>Cryogenics</topic><topic>Current carriers</topic><topic>Dielectric breakdown</topic><topic>Dielectric properties</topic><topic>Dielectric strength</topic><topic>Dielectrics</topic><topic>failure analysis</topic><topic>Heat generation</topic><topic>High temperature superconductors</topic><topic>Insulators</topic><topic>Nanocomposites</topic><topic>Nanoparticles</topic><topic>Polyamide resins</topic><topic>Polyimide resins</topic><topic>polymer</topic><topic>Polymers</topic><topic>Room temperature</topic><topic>Superconducting cables</topic><topic>Temperature</topic><topic>Temperature dependence</topic><topic>Testing</topic><topic>Thermal contraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cook, Jordan</creatorcontrib><creatorcontrib>Hones, Harrison</creatorcontrib><creatorcontrib>Mahon, Jacob</creatorcontrib><creatorcontrib>Yu, Lei</creatorcontrib><creatorcontrib>Krchnavek, Robert</creatorcontrib><creatorcontrib>Xue, Wei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cook, Jordan</au><au>Hones, Harrison</au><au>Mahon, Jacob</au><au>Yu, Lei</au><au>Krchnavek, Robert</au><au>Xue, Wei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2021</date><risdate>2021</risdate><volume>20</volume><spage>584</spage><epage>591</epage><pages>584-591</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>Cryogenic dielectrics are a crucial component for applied superconducting systems such as high-temperature superconductor (HTS) cables. Here two types of polymer nanocomposites were investigated as dielectrics for cryogenic applications. Both polyimide (PI) and polyamide (PA) nanocomposites showed exceptional performance as dielectrics, with PI as the stronger material. Significant dielectric strength improvement was observed for samples tested in the cryogenic environment when compared to those tested at the room temperature. The PI exhibited a high dielectric strength of 347 ± 67 kV/mm at 92 K, while its nanocomposites were in the range of 261-280 kV/mm. The performance change of these dielectrics was influenced by a number of factors including the density of free charge carriers, localized heat generation and material degradation, thermal contraction of polymers, and polymer-nanoparticle interfacial changes at cryogenic temperatures. The findings from this research can help advance the understanding of breakdown failures in cryogenic dielectrics.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNANO.2021.3098233</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-5069-6243</orcidid><orcidid>https://orcid.org/0000-0002-3145-270X</orcidid><orcidid>https://orcid.org/0000-0001-6550-5366</orcidid><orcidid>https://orcid.org/0000-0002-4179-7541</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2021, Vol.20, p.584-591
issn 1536-125X
1941-0085
language eng
recordid cdi_ieee_primary_9492003
source IEEE Electronic Library (IEL) Journals
subjects Cables
Charge density
Cryogenic engineering
Cryogenic temperature
Cryogenics
Current carriers
Dielectric breakdown
Dielectric properties
Dielectric strength
Dielectrics
failure analysis
Heat generation
High temperature superconductors
Insulators
Nanocomposites
Nanoparticles
Polyamide resins
Polyimide resins
polymer
Polymers
Room temperature
Superconducting cables
Temperature
Temperature dependence
Testing
Thermal contraction
title Temperature-Dependent Dielectric Properties of Polyimide (PI) and Polyamide (PA) Nanocomposites
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T03%3A08%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Temperature-Dependent%20Dielectric%20Properties%20of%20Polyimide%20(PI)%20and%20Polyamide%20(PA)%20Nanocomposites&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Cook,%20Jordan&rft.date=2021&rft.volume=20&rft.spage=584&rft.epage=591&rft.pages=584-591&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2021.3098233&rft_dat=%3Cproquest_ieee_%3E2560907915%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c295t-c5f53906e6989f4b9b3ebbc829363ce7112e40c2560940e04936224ed1789dde3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560907915&rft_id=info:pmid/&rft_ieee_id=9492003&rfr_iscdi=true