Loading…

Decision-Making System Based on a Fuzzy Hierarchical Analysis Process and an Artificial Neural Network for Flow Shop Machine Scheduling Model Under Uncertainty

The management of the uncertainty existing in any production system is fundamental to define machine scheduling models that allow programming production instances attached to the real world. In this research, a generalized decision-making system is developed for the management of uncertainty existin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.104059-104069
Main Authors: Villanueva-Jimenez, Luis Fernando, Vazquez-Lopez, Jose Antonio, Yanez-Mendiola, Javier, Calzada-Ledesma, Valentin, De Anda-Suarez, Juan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-8d36f61064dc2fe91af8a039bcc23763afade1a05aeaace9bb6d1febeb439ac23
cites cdi_FETCH-LOGICAL-c408t-8d36f61064dc2fe91af8a039bcc23763afade1a05aeaace9bb6d1febeb439ac23
container_end_page 104069
container_issue
container_start_page 104059
container_title IEEE access
container_volume 9
creator Villanueva-Jimenez, Luis Fernando
Vazquez-Lopez, Jose Antonio
Yanez-Mendiola, Javier
Calzada-Ledesma, Valentin
De Anda-Suarez, Juan
description The management of the uncertainty existing in any production system is fundamental to define machine scheduling models that allow programming production instances attached to the real world. In this research, a generalized decision-making system is developed for the management of uncertainty existing in flow shop machine scheduling models. The system assessment the uncertainty existing in internal and external factors that influence the decision-making process of production programming experts, and that is decisive in a final machine scheduling. The system is based on the combination of the Fuzzy Hierarchical Analysis Process, a membership analysis, and an Artificial Neural Network (ANN). The system allows to concentrate the experience of experts in machine scheduling and generalize their knowledge. The efficiency of the system is verified with a Fuzzy Hierarchical Analysis Process Model, the "ANN toolbox" preloaded in MATLAB and variety of structures of an Artificial Neural Network. The results are validated in an industrial application and the system is contrasted against an expert. The results show the efficiency of the system as it defines and predicts the final machine scheduling of production instances; the joint assessment of variables that add uncertainty to the production system allowed to reduce delays in product deliveries.
doi_str_mv 10.1109/ACCESS.2021.3099342
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9493234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9493234</ieee_id><doaj_id>oai_doaj_org_article_d8c3a06ab0274f99a4646ca0527ceef5</doaj_id><sourcerecordid>2556486364</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8d36f61064dc2fe91af8a039bcc23763afade1a05aeaace9bb6d1febeb439ac23</originalsourceid><addsrcrecordid>eNpNkdFu2yAUhq1pk1Z1fYLeIO3aGRhMzGWWNWulZpvk9Rodw6EhdU0Gjir3ZfaqI3VVDQkOOvr_7wj-orhkdMEYVV9W6_VV2y4qWrEFp0pxUb0rziomVclrLt__d_9YXKS0p3k1uVUvz4q_39D45MNQbuHBD_ekndKIj-QrJLQkDATI5vj8PJFrjxGi2XkDPVkN0E_JJ_IrBoMpERhs3mQVR--88VnyA4_xpYxPIT4QFyLZ9OGJtLtwIFvIoAFJa3Zoj_1p7jZY7MndYDHm02AcwQ_j9Kn44KBPePFaz4u7zdXv9XV5-_P7zXp1WxpBm7FsLJdOMiqFNZVDxcA1QLnqjKn4UnJwYJEBrQEBDKquk5Y57LATXEHWnBc3M9cG2OtD9I8QJx3A65dGiPca8uNMj9o2hgOV0NFqKZxSIKSQJrOrpUF0dWZ9nlmHGP4cMY16H44xf1nSVV1L0UguRVbxWWViSCmie5vKqD4Fq-dg9SlY_Rpsdl3OLo-Ibw4lFK-44P8AL0-iSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2556486364</pqid></control><display><type>article</type><title>Decision-Making System Based on a Fuzzy Hierarchical Analysis Process and an Artificial Neural Network for Flow Shop Machine Scheduling Model Under Uncertainty</title><source>IEEE Open Access Journals</source><creator>Villanueva-Jimenez, Luis Fernando ; Vazquez-Lopez, Jose Antonio ; Yanez-Mendiola, Javier ; Calzada-Ledesma, Valentin ; De Anda-Suarez, Juan</creator><creatorcontrib>Villanueva-Jimenez, Luis Fernando ; Vazquez-Lopez, Jose Antonio ; Yanez-Mendiola, Javier ; Calzada-Ledesma, Valentin ; De Anda-Suarez, Juan</creatorcontrib><description>The management of the uncertainty existing in any production system is fundamental to define machine scheduling models that allow programming production instances attached to the real world. In this research, a generalized decision-making system is developed for the management of uncertainty existing in flow shop machine scheduling models. The system assessment the uncertainty existing in internal and external factors that influence the decision-making process of production programming experts, and that is decisive in a final machine scheduling. The system is based on the combination of the Fuzzy Hierarchical Analysis Process, a membership analysis, and an Artificial Neural Network (ANN). The system allows to concentrate the experience of experts in machine scheduling and generalize their knowledge. The efficiency of the system is verified with a Fuzzy Hierarchical Analysis Process Model, the "ANN toolbox" preloaded in MATLAB and variety of structures of an Artificial Neural Network. The results are validated in an industrial application and the system is contrasted against an expert. The results show the efficiency of the system as it defines and predicts the final machine scheduling of production instances; the joint assessment of variables that add uncertainty to the production system allowed to reduce delays in product deliveries.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3099342</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Analytical models ; Artificial neural network ; Artificial neural networks ; Decision analysis ; Decision making ; decision-making system ; flow shop ; fuzzy hierarchical analysis process ; Industrial applications ; Job shop scheduling ; Job shops ; machine scheduling ; Mathematical model ; Neural networks ; Production scheduling ; Programming ; Scheduling ; Uncertainty</subject><ispartof>IEEE access, 2021, Vol.9, p.104059-104069</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8d36f61064dc2fe91af8a039bcc23763afade1a05aeaace9bb6d1febeb439ac23</citedby><cites>FETCH-LOGICAL-c408t-8d36f61064dc2fe91af8a039bcc23763afade1a05aeaace9bb6d1febeb439ac23</cites><orcidid>0000-0002-8411-072X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9493234$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Villanueva-Jimenez, Luis Fernando</creatorcontrib><creatorcontrib>Vazquez-Lopez, Jose Antonio</creatorcontrib><creatorcontrib>Yanez-Mendiola, Javier</creatorcontrib><creatorcontrib>Calzada-Ledesma, Valentin</creatorcontrib><creatorcontrib>De Anda-Suarez, Juan</creatorcontrib><title>Decision-Making System Based on a Fuzzy Hierarchical Analysis Process and an Artificial Neural Network for Flow Shop Machine Scheduling Model Under Uncertainty</title><title>IEEE access</title><addtitle>Access</addtitle><description>The management of the uncertainty existing in any production system is fundamental to define machine scheduling models that allow programming production instances attached to the real world. In this research, a generalized decision-making system is developed for the management of uncertainty existing in flow shop machine scheduling models. The system assessment the uncertainty existing in internal and external factors that influence the decision-making process of production programming experts, and that is decisive in a final machine scheduling. The system is based on the combination of the Fuzzy Hierarchical Analysis Process, a membership analysis, and an Artificial Neural Network (ANN). The system allows to concentrate the experience of experts in machine scheduling and generalize their knowledge. The efficiency of the system is verified with a Fuzzy Hierarchical Analysis Process Model, the "ANN toolbox" preloaded in MATLAB and variety of structures of an Artificial Neural Network. The results are validated in an industrial application and the system is contrasted against an expert. The results show the efficiency of the system as it defines and predicts the final machine scheduling of production instances; the joint assessment of variables that add uncertainty to the production system allowed to reduce delays in product deliveries.</description><subject>Analytical models</subject><subject>Artificial neural network</subject><subject>Artificial neural networks</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>decision-making system</subject><subject>flow shop</subject><subject>fuzzy hierarchical analysis process</subject><subject>Industrial applications</subject><subject>Job shop scheduling</subject><subject>Job shops</subject><subject>machine scheduling</subject><subject>Mathematical model</subject><subject>Neural networks</subject><subject>Production scheduling</subject><subject>Programming</subject><subject>Scheduling</subject><subject>Uncertainty</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkdFu2yAUhq1pk1Z1fYLeIO3aGRhMzGWWNWulZpvk9Rodw6EhdU0Gjir3ZfaqI3VVDQkOOvr_7wj-orhkdMEYVV9W6_VV2y4qWrEFp0pxUb0rziomVclrLt__d_9YXKS0p3k1uVUvz4q_39D45MNQbuHBD_ekndKIj-QrJLQkDATI5vj8PJFrjxGi2XkDPVkN0E_JJ_IrBoMpERhs3mQVR--88VnyA4_xpYxPIT4QFyLZ9OGJtLtwIFvIoAFJa3Zoj_1p7jZY7MndYDHm02AcwQ_j9Kn44KBPePFaz4u7zdXv9XV5-_P7zXp1WxpBm7FsLJdOMiqFNZVDxcA1QLnqjKn4UnJwYJEBrQEBDKquk5Y57LATXEHWnBc3M9cG2OtD9I8QJx3A65dGiPca8uNMj9o2hgOV0NFqKZxSIKSQJrOrpUF0dWZ9nlmHGP4cMY16H44xf1nSVV1L0UguRVbxWWViSCmie5vKqD4Fq-dg9SlY_Rpsdl3OLo-Ibw4lFK-44P8AL0-iSA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Villanueva-Jimenez, Luis Fernando</creator><creator>Vazquez-Lopez, Jose Antonio</creator><creator>Yanez-Mendiola, Javier</creator><creator>Calzada-Ledesma, Valentin</creator><creator>De Anda-Suarez, Juan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8411-072X</orcidid></search><sort><creationdate>2021</creationdate><title>Decision-Making System Based on a Fuzzy Hierarchical Analysis Process and an Artificial Neural Network for Flow Shop Machine Scheduling Model Under Uncertainty</title><author>Villanueva-Jimenez, Luis Fernando ; Vazquez-Lopez, Jose Antonio ; Yanez-Mendiola, Javier ; Calzada-Ledesma, Valentin ; De Anda-Suarez, Juan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8d36f61064dc2fe91af8a039bcc23763afade1a05aeaace9bb6d1febeb439ac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>Artificial neural network</topic><topic>Artificial neural networks</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>decision-making system</topic><topic>flow shop</topic><topic>fuzzy hierarchical analysis process</topic><topic>Industrial applications</topic><topic>Job shop scheduling</topic><topic>Job shops</topic><topic>machine scheduling</topic><topic>Mathematical model</topic><topic>Neural networks</topic><topic>Production scheduling</topic><topic>Programming</topic><topic>Scheduling</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Villanueva-Jimenez, Luis Fernando</creatorcontrib><creatorcontrib>Vazquez-Lopez, Jose Antonio</creatorcontrib><creatorcontrib>Yanez-Mendiola, Javier</creatorcontrib><creatorcontrib>Calzada-Ledesma, Valentin</creatorcontrib><creatorcontrib>De Anda-Suarez, Juan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Villanueva-Jimenez, Luis Fernando</au><au>Vazquez-Lopez, Jose Antonio</au><au>Yanez-Mendiola, Javier</au><au>Calzada-Ledesma, Valentin</au><au>De Anda-Suarez, Juan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Decision-Making System Based on a Fuzzy Hierarchical Analysis Process and an Artificial Neural Network for Flow Shop Machine Scheduling Model Under Uncertainty</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>104059</spage><epage>104069</epage><pages>104059-104069</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>The management of the uncertainty existing in any production system is fundamental to define machine scheduling models that allow programming production instances attached to the real world. In this research, a generalized decision-making system is developed for the management of uncertainty existing in flow shop machine scheduling models. The system assessment the uncertainty existing in internal and external factors that influence the decision-making process of production programming experts, and that is decisive in a final machine scheduling. The system is based on the combination of the Fuzzy Hierarchical Analysis Process, a membership analysis, and an Artificial Neural Network (ANN). The system allows to concentrate the experience of experts in machine scheduling and generalize their knowledge. The efficiency of the system is verified with a Fuzzy Hierarchical Analysis Process Model, the "ANN toolbox" preloaded in MATLAB and variety of structures of an Artificial Neural Network. The results are validated in an industrial application and the system is contrasted against an expert. The results show the efficiency of the system as it defines and predicts the final machine scheduling of production instances; the joint assessment of variables that add uncertainty to the production system allowed to reduce delays in product deliveries.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3099342</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0002-8411-072X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.104059-104069
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9493234
source IEEE Open Access Journals
subjects Analytical models
Artificial neural network
Artificial neural networks
Decision analysis
Decision making
decision-making system
flow shop
fuzzy hierarchical analysis process
Industrial applications
Job shop scheduling
Job shops
machine scheduling
Mathematical model
Neural networks
Production scheduling
Programming
Scheduling
Uncertainty
title Decision-Making System Based on a Fuzzy Hierarchical Analysis Process and an Artificial Neural Network for Flow Shop Machine Scheduling Model Under Uncertainty
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T03%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Decision-Making%20System%20Based%20on%20a%20Fuzzy%20Hierarchical%20Analysis%20Process%20and%20an%20Artificial%20Neural%20Network%20for%20Flow%20Shop%20Machine%20Scheduling%20Model%20Under%20Uncertainty&rft.jtitle=IEEE%20access&rft.au=Villanueva-Jimenez,%20Luis%20Fernando&rft.date=2021&rft.volume=9&rft.spage=104059&rft.epage=104069&rft.pages=104059-104069&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3099342&rft_dat=%3Cproquest_ieee_%3E2556486364%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8d36f61064dc2fe91af8a039bcc23763afade1a05aeaace9bb6d1febeb439ac23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2556486364&rft_id=info:pmid/&rft_ieee_id=9493234&rfr_iscdi=true