Loading…

Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model

Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and f...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on computer-aided design of integrated circuits and systems 2022-07, Vol.41 (7), p.2107-2114
Main Authors: Rajasekharan, Dinesh, Gaidhane, Amol, Trivedi, Amit Ranjan, Chauhan, Yogesh Singh
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63
cites cdi_FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63
container_end_page 2114
container_issue 7
container_start_page 2107
container_title IEEE transactions on computer-aided design of integrated circuits and systems
container_volume 41
creator Rajasekharan, Dinesh
Gaidhane, Amol
Trivedi, Amit Ranjan
Chauhan, Yogesh Singh
description Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and fire neuron model. We also show a winner-take-all circuit that can be used with this proposed neuron implementation. The neuron implementation requires just one FeFET, three baseline field-effect transistors, and one capacitor, making it area and energy-efficient. The neuron circuit, with minimum sized transistors, consumes approximately 10 pJ per spike. The neuron's energy consumption per spike can be reduced to as low as 100 fJ by designing some of the transistors with aspect ratio less than one.
doi_str_mv 10.1109/TCAD.2021.3101407
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9502157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9502157</ieee_id><sourcerecordid>2677853166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqXwAxBLJOaUZ8cfyVgKoZVKWcpsOfZLSZXUxUkG-PUkasX0hnvufdIh5J7CjFLInraL-cuMAaOzhALloC7IhGaJijkV9JJMgKk0BlBwTW7adg8DI1g2IXmOIXis0XahslH-uo2fTYsuWjXHGhs8dKar_CHyZZRX3e-y333FG7PrGx9tsA9D8u4d1rfkqjR1i3fnOyWfw9RiGa8_3laL-Tq2DNIutlJBgUWRZlRY4AnnlBvFIVNGCVmCclIyJoohZOCcM2Ct5dSxzHABTiZT8njaPQb_3WPb6b3vw2F4qZlUKhUJlSNFT5QNvm0DlvoYqsaEH01Bj7r0qEuPuvRZ19B5OHUqRPznMzEwQiV_PxdkbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677853166</pqid></control><display><type>article</type><title>Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model</title><source>IEEE Xplore (Online service)</source><creator>Rajasekharan, Dinesh ; Gaidhane, Amol ; Trivedi, Amit Ranjan ; Chauhan, Yogesh Singh</creator><creatorcontrib>Rajasekharan, Dinesh ; Gaidhane, Amol ; Trivedi, Amit Ranjan ; Chauhan, Yogesh Singh</creatorcontrib><description>Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and fire neuron model. We also show a winner-take-all circuit that can be used with this proposed neuron implementation. The neuron implementation requires just one FeFET, three baseline field-effect transistors, and one capacitor, making it area and energy-efficient. The neuron circuit, with minimum sized transistors, consumes approximately 10 pJ per spike. The neuron's energy consumption per spike can be reduced to as low as 100 fJ by designing some of the transistors with aspect ratio less than one.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2021.3101407</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aspect ratio ; Biological properties ; Biological system modeling ; Circuits ; Computational modeling ; Energy consumption ; Excitation ; FDSOI ; FeFETs ; ferroelectric ; Ferroelectric materials ; Ferroelectricity ; Field effect transistors ; FitzHugh-Nagumo neuron ; Integrated circuit modeling ; Mathematical model ; MOSFET ; neuromorphic computing ; neuron ; Neurons ; Semiconductor devices ; Transistors ; winner-take-all (WTA)</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2022-07, Vol.41 (7), p.2107-2114</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63</citedby><cites>FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63</cites><orcidid>0000-0002-1039-7959 ; 0000-0002-3356-8917 ; 0000-0001-5436-7922 ; 0000-0003-4677-3757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9502157$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rajasekharan, Dinesh</creatorcontrib><creatorcontrib>Gaidhane, Amol</creatorcontrib><creatorcontrib>Trivedi, Amit Ranjan</creatorcontrib><creatorcontrib>Chauhan, Yogesh Singh</creatorcontrib><title>Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and fire neuron model. We also show a winner-take-all circuit that can be used with this proposed neuron implementation. The neuron implementation requires just one FeFET, three baseline field-effect transistors, and one capacitor, making it area and energy-efficient. The neuron circuit, with minimum sized transistors, consumes approximately 10 pJ per spike. The neuron's energy consumption per spike can be reduced to as low as 100 fJ by designing some of the transistors with aspect ratio less than one.</description><subject>Aspect ratio</subject><subject>Biological properties</subject><subject>Biological system modeling</subject><subject>Circuits</subject><subject>Computational modeling</subject><subject>Energy consumption</subject><subject>Excitation</subject><subject>FDSOI</subject><subject>FeFETs</subject><subject>ferroelectric</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field effect transistors</subject><subject>FitzHugh-Nagumo neuron</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>MOSFET</subject><subject>neuromorphic computing</subject><subject>neuron</subject><subject>Neurons</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><subject>winner-take-all (WTA)</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EEqXwAxBLJOaUZ8cfyVgKoZVKWcpsOfZLSZXUxUkG-PUkasX0hnvufdIh5J7CjFLInraL-cuMAaOzhALloC7IhGaJijkV9JJMgKk0BlBwTW7adg8DI1g2IXmOIXis0XahslH-uo2fTYsuWjXHGhs8dKar_CHyZZRX3e-y333FG7PrGx9tsA9D8u4d1rfkqjR1i3fnOyWfw9RiGa8_3laL-Tq2DNIutlJBgUWRZlRY4AnnlBvFIVNGCVmCclIyJoohZOCcM2Ct5dSxzHABTiZT8njaPQb_3WPb6b3vw2F4qZlUKhUJlSNFT5QNvm0DlvoYqsaEH01Bj7r0qEuPuvRZ19B5OHUqRPznMzEwQiV_PxdkbQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Rajasekharan, Dinesh</creator><creator>Gaidhane, Amol</creator><creator>Trivedi, Amit Ranjan</creator><creator>Chauhan, Yogesh Singh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1039-7959</orcidid><orcidid>https://orcid.org/0000-0002-3356-8917</orcidid><orcidid>https://orcid.org/0000-0001-5436-7922</orcidid><orcidid>https://orcid.org/0000-0003-4677-3757</orcidid></search><sort><creationdate>20220701</creationdate><title>Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model</title><author>Rajasekharan, Dinesh ; Gaidhane, Amol ; Trivedi, Amit Ranjan ; Chauhan, Yogesh Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aspect ratio</topic><topic>Biological properties</topic><topic>Biological system modeling</topic><topic>Circuits</topic><topic>Computational modeling</topic><topic>Energy consumption</topic><topic>Excitation</topic><topic>FDSOI</topic><topic>FeFETs</topic><topic>ferroelectric</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field effect transistors</topic><topic>FitzHugh-Nagumo neuron</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>MOSFET</topic><topic>neuromorphic computing</topic><topic>neuron</topic><topic>Neurons</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><topic>winner-take-all (WTA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajasekharan, Dinesh</creatorcontrib><creatorcontrib>Gaidhane, Amol</creatorcontrib><creatorcontrib>Trivedi, Amit Ranjan</creatorcontrib><creatorcontrib>Chauhan, Yogesh Singh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajasekharan, Dinesh</au><au>Gaidhane, Amol</au><au>Trivedi, Amit Ranjan</au><au>Chauhan, Yogesh Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>41</volume><issue>7</issue><spage>2107</spage><epage>2114</epage><pages>2107-2114</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and fire neuron model. We also show a winner-take-all circuit that can be used with this proposed neuron implementation. The neuron implementation requires just one FeFET, three baseline field-effect transistors, and one capacitor, making it area and energy-efficient. The neuron circuit, with minimum sized transistors, consumes approximately 10 pJ per spike. The neuron's energy consumption per spike can be reduced to as low as 100 fJ by designing some of the transistors with aspect ratio less than one.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2021.3101407</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1039-7959</orcidid><orcidid>https://orcid.org/0000-0002-3356-8917</orcidid><orcidid>https://orcid.org/0000-0001-5436-7922</orcidid><orcidid>https://orcid.org/0000-0003-4677-3757</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0278-0070
ispartof IEEE transactions on computer-aided design of integrated circuits and systems, 2022-07, Vol.41 (7), p.2107-2114
issn 0278-0070
1937-4151
language eng
recordid cdi_ieee_primary_9502157
source IEEE Xplore (Online service)
subjects Aspect ratio
Biological properties
Biological system modeling
Circuits
Computational modeling
Energy consumption
Excitation
FDSOI
FeFETs
ferroelectric
Ferroelectric materials
Ferroelectricity
Field effect transistors
FitzHugh-Nagumo neuron
Integrated circuit modeling
Mathematical model
MOSFET
neuromorphic computing
neuron
Neurons
Semiconductor devices
Transistors
winner-take-all (WTA)
title Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20FET-Based%20Implementation%20of%20FitzHugh-Nagumo%20Neuron%20Model&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Rajasekharan,%20Dinesh&rft.date=2022-07-01&rft.volume=41&rft.issue=7&rft.spage=2107&rft.epage=2114&rft.pages=2107-2114&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2021.3101407&rft_dat=%3Cproquest_ieee_%3E2677853166%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677853166&rft_id=info:pmid/&rft_ieee_id=9502157&rfr_iscdi=true