Loading…
Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model
Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and f...
Saved in:
Published in: | IEEE transactions on computer-aided design of integrated circuits and systems 2022-07, Vol.41 (7), p.2107-2114 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63 |
---|---|
cites | cdi_FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63 |
container_end_page | 2114 |
container_issue | 7 |
container_start_page | 2107 |
container_title | IEEE transactions on computer-aided design of integrated circuits and systems |
container_volume | 41 |
creator | Rajasekharan, Dinesh Gaidhane, Amol Trivedi, Amit Ranjan Chauhan, Yogesh Singh |
description | Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and fire neuron model. We also show a winner-take-all circuit that can be used with this proposed neuron implementation. The neuron implementation requires just one FeFET, three baseline field-effect transistors, and one capacitor, making it area and energy-efficient. The neuron circuit, with minimum sized transistors, consumes approximately 10 pJ per spike. The neuron's energy consumption per spike can be reduced to as low as 100 fJ by designing some of the transistors with aspect ratio less than one. |
doi_str_mv | 10.1109/TCAD.2021.3101407 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9502157</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9502157</ieee_id><sourcerecordid>2677853166</sourcerecordid><originalsourceid>FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63</originalsourceid><addsrcrecordid>eNo9kD1PwzAURS0EEqXwAxBLJOaUZ8cfyVgKoZVKWcpsOfZLSZXUxUkG-PUkasX0hnvufdIh5J7CjFLInraL-cuMAaOzhALloC7IhGaJijkV9JJMgKk0BlBwTW7adg8DI1g2IXmOIXis0XahslH-uo2fTYsuWjXHGhs8dKar_CHyZZRX3e-y333FG7PrGx9tsA9D8u4d1rfkqjR1i3fnOyWfw9RiGa8_3laL-Tq2DNIutlJBgUWRZlRY4AnnlBvFIVNGCVmCclIyJoohZOCcM2Ct5dSxzHABTiZT8njaPQb_3WPb6b3vw2F4qZlUKhUJlSNFT5QNvm0DlvoYqsaEH01Bj7r0qEuPuvRZ19B5OHUqRPznMzEwQiV_PxdkbQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2677853166</pqid></control><display><type>article</type><title>Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model</title><source>IEEE Xplore (Online service)</source><creator>Rajasekharan, Dinesh ; Gaidhane, Amol ; Trivedi, Amit Ranjan ; Chauhan, Yogesh Singh</creator><creatorcontrib>Rajasekharan, Dinesh ; Gaidhane, Amol ; Trivedi, Amit Ranjan ; Chauhan, Yogesh Singh</creatorcontrib><description>Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and fire neuron model. We also show a winner-take-all circuit that can be used with this proposed neuron implementation. The neuron implementation requires just one FeFET, three baseline field-effect transistors, and one capacitor, making it area and energy-efficient. The neuron circuit, with minimum sized transistors, consumes approximately 10 pJ per spike. The neuron's energy consumption per spike can be reduced to as low as 100 fJ by designing some of the transistors with aspect ratio less than one.</description><identifier>ISSN: 0278-0070</identifier><identifier>EISSN: 1937-4151</identifier><identifier>DOI: 10.1109/TCAD.2021.3101407</identifier><identifier>CODEN: ITCSDI</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Aspect ratio ; Biological properties ; Biological system modeling ; Circuits ; Computational modeling ; Energy consumption ; Excitation ; FDSOI ; FeFETs ; ferroelectric ; Ferroelectric materials ; Ferroelectricity ; Field effect transistors ; FitzHugh-Nagumo neuron ; Integrated circuit modeling ; Mathematical model ; MOSFET ; neuromorphic computing ; neuron ; Neurons ; Semiconductor devices ; Transistors ; winner-take-all (WTA)</subject><ispartof>IEEE transactions on computer-aided design of integrated circuits and systems, 2022-07, Vol.41 (7), p.2107-2114</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63</citedby><cites>FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63</cites><orcidid>0000-0002-1039-7959 ; 0000-0002-3356-8917 ; 0000-0001-5436-7922 ; 0000-0003-4677-3757</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9502157$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Rajasekharan, Dinesh</creatorcontrib><creatorcontrib>Gaidhane, Amol</creatorcontrib><creatorcontrib>Trivedi, Amit Ranjan</creatorcontrib><creatorcontrib>Chauhan, Yogesh Singh</creatorcontrib><title>Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model</title><title>IEEE transactions on computer-aided design of integrated circuits and systems</title><addtitle>TCAD</addtitle><description>Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and fire neuron model. We also show a winner-take-all circuit that can be used with this proposed neuron implementation. The neuron implementation requires just one FeFET, three baseline field-effect transistors, and one capacitor, making it area and energy-efficient. The neuron circuit, with minimum sized transistors, consumes approximately 10 pJ per spike. The neuron's energy consumption per spike can be reduced to as low as 100 fJ by designing some of the transistors with aspect ratio less than one.</description><subject>Aspect ratio</subject><subject>Biological properties</subject><subject>Biological system modeling</subject><subject>Circuits</subject><subject>Computational modeling</subject><subject>Energy consumption</subject><subject>Excitation</subject><subject>FDSOI</subject><subject>FeFETs</subject><subject>ferroelectric</subject><subject>Ferroelectric materials</subject><subject>Ferroelectricity</subject><subject>Field effect transistors</subject><subject>FitzHugh-Nagumo neuron</subject><subject>Integrated circuit modeling</subject><subject>Mathematical model</subject><subject>MOSFET</subject><subject>neuromorphic computing</subject><subject>neuron</subject><subject>Neurons</subject><subject>Semiconductor devices</subject><subject>Transistors</subject><subject>winner-take-all (WTA)</subject><issn>0278-0070</issn><issn>1937-4151</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kD1PwzAURS0EEqXwAxBLJOaUZ8cfyVgKoZVKWcpsOfZLSZXUxUkG-PUkasX0hnvufdIh5J7CjFLInraL-cuMAaOzhALloC7IhGaJijkV9JJMgKk0BlBwTW7adg8DI1g2IXmOIXis0XahslH-uo2fTYsuWjXHGhs8dKar_CHyZZRX3e-y333FG7PrGx9tsA9D8u4d1rfkqjR1i3fnOyWfw9RiGa8_3laL-Tq2DNIutlJBgUWRZlRY4AnnlBvFIVNGCVmCclIyJoohZOCcM2Ct5dSxzHABTiZT8njaPQb_3WPb6b3vw2F4qZlUKhUJlSNFT5QNvm0DlvoYqsaEH01Bj7r0qEuPuvRZ19B5OHUqRPznMzEwQiV_PxdkbQ</recordid><startdate>20220701</startdate><enddate>20220701</enddate><creator>Rajasekharan, Dinesh</creator><creator>Gaidhane, Amol</creator><creator>Trivedi, Amit Ranjan</creator><creator>Chauhan, Yogesh Singh</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-1039-7959</orcidid><orcidid>https://orcid.org/0000-0002-3356-8917</orcidid><orcidid>https://orcid.org/0000-0001-5436-7922</orcidid><orcidid>https://orcid.org/0000-0003-4677-3757</orcidid></search><sort><creationdate>20220701</creationdate><title>Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model</title><author>Rajasekharan, Dinesh ; Gaidhane, Amol ; Trivedi, Amit Ranjan ; Chauhan, Yogesh Singh</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Aspect ratio</topic><topic>Biological properties</topic><topic>Biological system modeling</topic><topic>Circuits</topic><topic>Computational modeling</topic><topic>Energy consumption</topic><topic>Excitation</topic><topic>FDSOI</topic><topic>FeFETs</topic><topic>ferroelectric</topic><topic>Ferroelectric materials</topic><topic>Ferroelectricity</topic><topic>Field effect transistors</topic><topic>FitzHugh-Nagumo neuron</topic><topic>Integrated circuit modeling</topic><topic>Mathematical model</topic><topic>MOSFET</topic><topic>neuromorphic computing</topic><topic>neuron</topic><topic>Neurons</topic><topic>Semiconductor devices</topic><topic>Transistors</topic><topic>winner-take-all (WTA)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rajasekharan, Dinesh</creatorcontrib><creatorcontrib>Gaidhane, Amol</creatorcontrib><creatorcontrib>Trivedi, Amit Ranjan</creatorcontrib><creatorcontrib>Chauhan, Yogesh Singh</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005–Present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEL</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rajasekharan, Dinesh</au><au>Gaidhane, Amol</au><au>Trivedi, Amit Ranjan</au><au>Chauhan, Yogesh Singh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model</atitle><jtitle>IEEE transactions on computer-aided design of integrated circuits and systems</jtitle><stitle>TCAD</stitle><date>2022-07-01</date><risdate>2022</risdate><volume>41</volume><issue>7</issue><spage>2107</spage><epage>2114</epage><pages>2107-2114</pages><issn>0278-0070</issn><eissn>1937-4151</eissn><coden>ITCSDI</coden><abstract>Ferroelectric field-effect transistor (FeFET)-based circuit implementation mimicking FitzHugh-Nagumo neuron is proposed in this work. The proposed circuit is shown to mimic biological neuron properties, such as excitation block and anodal break excitation which are not mimicked by an integrate and fire neuron model. We also show a winner-take-all circuit that can be used with this proposed neuron implementation. The neuron implementation requires just one FeFET, three baseline field-effect transistors, and one capacitor, making it area and energy-efficient. The neuron circuit, with minimum sized transistors, consumes approximately 10 pJ per spike. The neuron's energy consumption per spike can be reduced to as low as 100 fJ by designing some of the transistors with aspect ratio less than one.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TCAD.2021.3101407</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0002-1039-7959</orcidid><orcidid>https://orcid.org/0000-0002-3356-8917</orcidid><orcidid>https://orcid.org/0000-0001-5436-7922</orcidid><orcidid>https://orcid.org/0000-0003-4677-3757</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0278-0070 |
ispartof | IEEE transactions on computer-aided design of integrated circuits and systems, 2022-07, Vol.41 (7), p.2107-2114 |
issn | 0278-0070 1937-4151 |
language | eng |
recordid | cdi_ieee_primary_9502157 |
source | IEEE Xplore (Online service) |
subjects | Aspect ratio Biological properties Biological system modeling Circuits Computational modeling Energy consumption Excitation FDSOI FeFETs ferroelectric Ferroelectric materials Ferroelectricity Field effect transistors FitzHugh-Nagumo neuron Integrated circuit modeling Mathematical model MOSFET neuromorphic computing neuron Neurons Semiconductor devices Transistors winner-take-all (WTA) |
title | Ferroelectric FET-Based Implementation of FitzHugh-Nagumo Neuron Model |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T12%3A42%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Ferroelectric%20FET-Based%20Implementation%20of%20FitzHugh-Nagumo%20Neuron%20Model&rft.jtitle=IEEE%20transactions%20on%20computer-aided%20design%20of%20integrated%20circuits%20and%20systems&rft.au=Rajasekharan,%20Dinesh&rft.date=2022-07-01&rft.volume=41&rft.issue=7&rft.spage=2107&rft.epage=2114&rft.pages=2107-2114&rft.issn=0278-0070&rft.eissn=1937-4151&rft.coden=ITCSDI&rft_id=info:doi/10.1109/TCAD.2021.3101407&rft_dat=%3Cproquest_ieee_%3E2677853166%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c208t-c670bebb8915c0434414a74097a756f07d66225b5c020ddda0ccc41d29a450d63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2677853166&rft_id=info:pmid/&rft_ieee_id=9502157&rfr_iscdi=true |