Loading…

A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems

To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and \infty -norm confidence sets are presented to m...

Full description

Saved in:
Bibliographic Details
Published in:IEEE access 2021, Vol.9, p.111132-111142
Main Authors: Li, Panpan, Song, Liangyun, Qu, Jixian, Huang, Yuehui, Wu, Xiaoyun, Lu, Xi, Xia, Shiwei
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13
cites cdi_FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13
container_end_page 111142
container_issue
container_start_page 111132
container_title IEEE access
container_volume 9
creator Li, Panpan
Song, Liangyun
Qu, Jixian
Huang, Yuehui
Wu, Xiaoyun
Lu, Xi
Xia, Shiwei
description To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and \infty -norm confidence sets are presented to model the fluctuations of wind power output, then a two-stage distributionally optimization model is formed to minimize system total cost with secure operation constraints, where the ON-OFF status of generators and SUs are determined in the first stage by day-ahead dispatching, while the power output of generators, wind power curtailment, load shedding and SUs charging/discharging power are optimized in the second stage. Afterward, the column-and-constraint generation (CCG) algorithm is presented to solve the proposed two-stage model. Finally the influence of confidence level of confidence sets and SU capacities on system total cost is analyzed, and the effectiveness of the proposed model is also validated by the case studies.
doi_str_mv 10.1109/ACCESS.2021.3101569
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9502683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9502683</ieee_id><doaj_id>oai_doaj_org_article_eee654c044624e6eb7b6850b73816693</doaj_id><sourcerecordid>2560913039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13</originalsourceid><addsrcrecordid>eNpNkUFr3DAQhU1poSHNL8hF0LO3I48lW8dlm7QpKRvihB6FZI-DFu9qK2kTtr--2jqE6qLhMe8baV5RXHJYcA7qy3K1uuq6RQUVXyAHLqR6V5xVXKoSBcr3_9Ufi4sYN5BPmyXRnBXPS_bw4ssumSdiX11MwdlDcn5npunI7r09xMTW--S27o856eynH2hiow_sl9sN7NqEbWQmV13y4UR53LkU2Q_vdikj1nsKJtHA7vwLBdYdY6Jt_FR8GM0U6eL1Pi8er68eVt_L2_W3m9XytuxraFPZGqEEjNgqWY0C23ocBmqlRYtCNRKxBgvUj5UhiQ3IvgGooQfe21HZnuN5cTNzB282eh_c1oSj9sbpf4IPT9qE5PqJNBFJUfdQ17KqSZJtrGwF2AbzrqTCzPo8s_bB_z5QTHrjDyEvKupKSFAcAVXuwrmrDz7GQOPbVA76lJee89KnvPRrXtl1ObtcfsabI_-9ki3iX6CAkOA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560913039</pqid></control><display><type>article</type><title>A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems</title><source>IEEE Open Access Journals</source><creator>Li, Panpan ; Song, Liangyun ; Qu, Jixian ; Huang, Yuehui ; Wu, Xiaoyun ; Lu, Xi ; Xia, Shiwei</creator><creatorcontrib>Li, Panpan ; Song, Liangyun ; Qu, Jixian ; Huang, Yuehui ; Wu, Xiaoyun ; Lu, Xi ; Xia, Shiwei</creatorcontrib><description>To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\infty &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm confidence sets are presented to model the fluctuations of wind power output, then a two-stage distributionally optimization model is formed to minimize system total cost with secure operation constraints, where the ON-OFF status of generators and SUs are determined in the first stage by day-ahead dispatching, while the power output of generators, wind power curtailment, load shedding and SUs charging/discharging power are optimized in the second stage. Afterward, the column-and-constraint generation (CCG) algorithm is presented to solve the proposed two-stage model. Finally the influence of confidence level of confidence sets and SU capacities on system total cost is analyzed, and the effectiveness of the proposed model is also validated by the case studies.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3101569</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; CCG algorithm ; Confidence intervals ; confidence set ; Cost analysis ; Dispatching ; Distributionally robust optimization ; Energy storage ; Generators ; Load modeling ; Load shedding ; Optimization ; Optimization models ; Power systems ; Robustness ; Storage units ; two-stage ; Wind farms ; Wind power ; Wind power generation</subject><ispartof>IEEE access, 2021, Vol.9, p.111132-111142</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13</citedby><cites>FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13</cites><orcidid>0000-0003-1272-210X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9502683$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Song, Liangyun</creatorcontrib><creatorcontrib>Qu, Jixian</creatorcontrib><creatorcontrib>Huang, Yuehui</creatorcontrib><creatorcontrib>Wu, Xiaoyun</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Xia, Shiwei</creatorcontrib><title>A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\infty &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm confidence sets are presented to model the fluctuations of wind power output, then a two-stage distributionally optimization model is formed to minimize system total cost with secure operation constraints, where the ON-OFF status of generators and SUs are determined in the first stage by day-ahead dispatching, while the power output of generators, wind power curtailment, load shedding and SUs charging/discharging power are optimized in the second stage. Afterward, the column-and-constraint generation (CCG) algorithm is presented to solve the proposed two-stage model. Finally the influence of confidence level of confidence sets and SU capacities on system total cost is analyzed, and the effectiveness of the proposed model is also validated by the case studies.</description><subject>Algorithms</subject><subject>CCG algorithm</subject><subject>Confidence intervals</subject><subject>confidence set</subject><subject>Cost analysis</subject><subject>Dispatching</subject><subject>Distributionally robust optimization</subject><subject>Energy storage</subject><subject>Generators</subject><subject>Load modeling</subject><subject>Load shedding</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Power systems</subject><subject>Robustness</subject><subject>Storage units</subject><subject>two-stage</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFr3DAQhU1poSHNL8hF0LO3I48lW8dlm7QpKRvihB6FZI-DFu9qK2kTtr--2jqE6qLhMe8baV5RXHJYcA7qy3K1uuq6RQUVXyAHLqR6V5xVXKoSBcr3_9Ufi4sYN5BPmyXRnBXPS_bw4ssumSdiX11MwdlDcn5npunI7r09xMTW--S27o856eynH2hiow_sl9sN7NqEbWQmV13y4UR53LkU2Q_vdikj1nsKJtHA7vwLBdYdY6Jt_FR8GM0U6eL1Pi8er68eVt_L2_W3m9XytuxraFPZGqEEjNgqWY0C23ocBmqlRYtCNRKxBgvUj5UhiQ3IvgGooQfe21HZnuN5cTNzB282eh_c1oSj9sbpf4IPT9qE5PqJNBFJUfdQ17KqSZJtrGwF2AbzrqTCzPo8s_bB_z5QTHrjDyEvKupKSFAcAVXuwrmrDz7GQOPbVA76lJee89KnvPRrXtl1ObtcfsabI_-9ki3iX6CAkOA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Panpan</creator><creator>Song, Liangyun</creator><creator>Qu, Jixian</creator><creator>Huang, Yuehui</creator><creator>Wu, Xiaoyun</creator><creator>Lu, Xi</creator><creator>Xia, Shiwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1272-210X</orcidid></search><sort><creationdate>2021</creationdate><title>A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems</title><author>Li, Panpan ; Song, Liangyun ; Qu, Jixian ; Huang, Yuehui ; Wu, Xiaoyun ; Lu, Xi ; Xia, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CCG algorithm</topic><topic>Confidence intervals</topic><topic>confidence set</topic><topic>Cost analysis</topic><topic>Dispatching</topic><topic>Distributionally robust optimization</topic><topic>Energy storage</topic><topic>Generators</topic><topic>Load modeling</topic><topic>Load shedding</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Power systems</topic><topic>Robustness</topic><topic>Storage units</topic><topic>two-stage</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Song, Liangyun</creatorcontrib><creatorcontrib>Qu, Jixian</creatorcontrib><creatorcontrib>Huang, Yuehui</creatorcontrib><creatorcontrib>Wu, Xiaoyun</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Xia, Shiwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Panpan</au><au>Song, Liangyun</au><au>Qu, Jixian</au><au>Huang, Yuehui</au><au>Wu, Xiaoyun</au><au>Lu, Xi</au><au>Xia, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>111132</spage><epage>111142</epage><pages>111132-111142</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and &lt;inline-formula&gt; &lt;tex-math notation="LaTeX"&gt;\infty &lt;/tex-math&gt;&lt;/inline-formula&gt;-norm confidence sets are presented to model the fluctuations of wind power output, then a two-stage distributionally optimization model is formed to minimize system total cost with secure operation constraints, where the ON-OFF status of generators and SUs are determined in the first stage by day-ahead dispatching, while the power output of generators, wind power curtailment, load shedding and SUs charging/discharging power are optimized in the second stage. Afterward, the column-and-constraint generation (CCG) algorithm is presented to solve the proposed two-stage model. Finally the influence of confidence level of confidence sets and SU capacities on system total cost is analyzed, and the effectiveness of the proposed model is also validated by the case studies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3101569</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1272-210X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2169-3536
ispartof IEEE access, 2021, Vol.9, p.111132-111142
issn 2169-3536
2169-3536
language eng
recordid cdi_ieee_primary_9502683
source IEEE Open Access Journals
subjects Algorithms
CCG algorithm
Confidence intervals
confidence set
Cost analysis
Dispatching
Distributionally robust optimization
Energy storage
Generators
Load modeling
Load shedding
Optimization
Optimization models
Power systems
Robustness
Storage units
two-stage
Wind farms
Wind power
Wind power generation
title A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Stage%20Distributionally%20Robust%20Optimization%20Model%20for%20Wind%20Farms%20and%20Storage%20Units%20Jointly%20Operated%20Power%20Systems&rft.jtitle=IEEE%20access&rft.au=Li,%20Panpan&rft.date=2021&rft.volume=9&rft.spage=111132&rft.epage=111142&rft.pages=111132-111142&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3101569&rft_dat=%3Cproquest_ieee_%3E2560913039%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560913039&rft_id=info:pmid/&rft_ieee_id=9502683&rfr_iscdi=true