Loading…
A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems
To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and \infty -norm confidence sets are presented to m...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.111132-111142 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13 |
---|---|
cites | cdi_FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13 |
container_end_page | 111142 |
container_issue | |
container_start_page | 111132 |
container_title | IEEE access |
container_volume | 9 |
creator | Li, Panpan Song, Liangyun Qu, Jixian Huang, Yuehui Wu, Xiaoyun Lu, Xi Xia, Shiwei |
description | To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and \infty -norm confidence sets are presented to model the fluctuations of wind power output, then a two-stage distributionally optimization model is formed to minimize system total cost with secure operation constraints, where the ON-OFF status of generators and SUs are determined in the first stage by day-ahead dispatching, while the power output of generators, wind power curtailment, load shedding and SUs charging/discharging power are optimized in the second stage. Afterward, the column-and-constraint generation (CCG) algorithm is presented to solve the proposed two-stage model. Finally the influence of confidence level of confidence sets and SU capacities on system total cost is analyzed, and the effectiveness of the proposed model is also validated by the case studies. |
doi_str_mv | 10.1109/ACCESS.2021.3101569 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9502683</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9502683</ieee_id><doaj_id>oai_doaj_org_article_eee654c044624e6eb7b6850b73816693</doaj_id><sourcerecordid>2560913039</sourcerecordid><originalsourceid>FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13</originalsourceid><addsrcrecordid>eNpNkUFr3DAQhU1poSHNL8hF0LO3I48lW8dlm7QpKRvihB6FZI-DFu9qK2kTtr--2jqE6qLhMe8baV5RXHJYcA7qy3K1uuq6RQUVXyAHLqR6V5xVXKoSBcr3_9Ufi4sYN5BPmyXRnBXPS_bw4ssumSdiX11MwdlDcn5npunI7r09xMTW--S27o856eynH2hiow_sl9sN7NqEbWQmV13y4UR53LkU2Q_vdikj1nsKJtHA7vwLBdYdY6Jt_FR8GM0U6eL1Pi8er68eVt_L2_W3m9XytuxraFPZGqEEjNgqWY0C23ocBmqlRYtCNRKxBgvUj5UhiQ3IvgGooQfe21HZnuN5cTNzB282eh_c1oSj9sbpf4IPT9qE5PqJNBFJUfdQ17KqSZJtrGwF2AbzrqTCzPo8s_bB_z5QTHrjDyEvKupKSFAcAVXuwrmrDz7GQOPbVA76lJee89KnvPRrXtl1ObtcfsabI_-9ki3iX6CAkOA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2560913039</pqid></control><display><type>article</type><title>A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems</title><source>IEEE Open Access Journals</source><creator>Li, Panpan ; Song, Liangyun ; Qu, Jixian ; Huang, Yuehui ; Wu, Xiaoyun ; Lu, Xi ; Xia, Shiwei</creator><creatorcontrib>Li, Panpan ; Song, Liangyun ; Qu, Jixian ; Huang, Yuehui ; Wu, Xiaoyun ; Lu, Xi ; Xia, Shiwei</creatorcontrib><description>To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and <inline-formula> <tex-math notation="LaTeX">\infty </tex-math></inline-formula>-norm confidence sets are presented to model the fluctuations of wind power output, then a two-stage distributionally optimization model is formed to minimize system total cost with secure operation constraints, where the ON-OFF status of generators and SUs are determined in the first stage by day-ahead dispatching, while the power output of generators, wind power curtailment, load shedding and SUs charging/discharging power are optimized in the second stage. Afterward, the column-and-constraint generation (CCG) algorithm is presented to solve the proposed two-stage model. Finally the influence of confidence level of confidence sets and SU capacities on system total cost is analyzed, and the effectiveness of the proposed model is also validated by the case studies.</description><identifier>ISSN: 2169-3536</identifier><identifier>EISSN: 2169-3536</identifier><identifier>DOI: 10.1109/ACCESS.2021.3101569</identifier><identifier>CODEN: IAECCG</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Algorithms ; CCG algorithm ; Confidence intervals ; confidence set ; Cost analysis ; Dispatching ; Distributionally robust optimization ; Energy storage ; Generators ; Load modeling ; Load shedding ; Optimization ; Optimization models ; Power systems ; Robustness ; Storage units ; two-stage ; Wind farms ; Wind power ; Wind power generation</subject><ispartof>IEEE access, 2021, Vol.9, p.111132-111142</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13</citedby><cites>FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13</cites><orcidid>0000-0003-1272-210X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9502683$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,4024,27633,27923,27924,27925,54933</link.rule.ids></links><search><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Song, Liangyun</creatorcontrib><creatorcontrib>Qu, Jixian</creatorcontrib><creatorcontrib>Huang, Yuehui</creatorcontrib><creatorcontrib>Wu, Xiaoyun</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Xia, Shiwei</creatorcontrib><title>A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems</title><title>IEEE access</title><addtitle>Access</addtitle><description>To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and <inline-formula> <tex-math notation="LaTeX">\infty </tex-math></inline-formula>-norm confidence sets are presented to model the fluctuations of wind power output, then a two-stage distributionally optimization model is formed to minimize system total cost with secure operation constraints, where the ON-OFF status of generators and SUs are determined in the first stage by day-ahead dispatching, while the power output of generators, wind power curtailment, load shedding and SUs charging/discharging power are optimized in the second stage. Afterward, the column-and-constraint generation (CCG) algorithm is presented to solve the proposed two-stage model. Finally the influence of confidence level of confidence sets and SU capacities on system total cost is analyzed, and the effectiveness of the proposed model is also validated by the case studies.</description><subject>Algorithms</subject><subject>CCG algorithm</subject><subject>Confidence intervals</subject><subject>confidence set</subject><subject>Cost analysis</subject><subject>Dispatching</subject><subject>Distributionally robust optimization</subject><subject>Energy storage</subject><subject>Generators</subject><subject>Load modeling</subject><subject>Load shedding</subject><subject>Optimization</subject><subject>Optimization models</subject><subject>Power systems</subject><subject>Robustness</subject><subject>Storage units</subject><subject>two-stage</subject><subject>Wind farms</subject><subject>Wind power</subject><subject>Wind power generation</subject><issn>2169-3536</issn><issn>2169-3536</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUFr3DAQhU1poSHNL8hF0LO3I48lW8dlm7QpKRvihB6FZI-DFu9qK2kTtr--2jqE6qLhMe8baV5RXHJYcA7qy3K1uuq6RQUVXyAHLqR6V5xVXKoSBcr3_9Ufi4sYN5BPmyXRnBXPS_bw4ssumSdiX11MwdlDcn5npunI7r09xMTW--S27o856eynH2hiow_sl9sN7NqEbWQmV13y4UR53LkU2Q_vdikj1nsKJtHA7vwLBdYdY6Jt_FR8GM0U6eL1Pi8er68eVt_L2_W3m9XytuxraFPZGqEEjNgqWY0C23ocBmqlRYtCNRKxBgvUj5UhiQ3IvgGooQfe21HZnuN5cTNzB282eh_c1oSj9sbpf4IPT9qE5PqJNBFJUfdQ17KqSZJtrGwF2AbzrqTCzPo8s_bB_z5QTHrjDyEvKupKSFAcAVXuwrmrDz7GQOPbVA76lJee89KnvPRrXtl1ObtcfsabI_-9ki3iX6CAkOA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Li, Panpan</creator><creator>Song, Liangyun</creator><creator>Qu, Jixian</creator><creator>Huang, Yuehui</creator><creator>Wu, Xiaoyun</creator><creator>Lu, Xi</creator><creator>Xia, Shiwei</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1272-210X</orcidid></search><sort><creationdate>2021</creationdate><title>A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems</title><author>Li, Panpan ; Song, Liangyun ; Qu, Jixian ; Huang, Yuehui ; Wu, Xiaoyun ; Lu, Xi ; Xia, Shiwei</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>CCG algorithm</topic><topic>Confidence intervals</topic><topic>confidence set</topic><topic>Cost analysis</topic><topic>Dispatching</topic><topic>Distributionally robust optimization</topic><topic>Energy storage</topic><topic>Generators</topic><topic>Load modeling</topic><topic>Load shedding</topic><topic>Optimization</topic><topic>Optimization models</topic><topic>Power systems</topic><topic>Robustness</topic><topic>Storage units</topic><topic>two-stage</topic><topic>Wind farms</topic><topic>Wind power</topic><topic>Wind power generation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Panpan</creatorcontrib><creatorcontrib>Song, Liangyun</creatorcontrib><creatorcontrib>Qu, Jixian</creatorcontrib><creatorcontrib>Huang, Yuehui</creatorcontrib><creatorcontrib>Wu, Xiaoyun</creatorcontrib><creatorcontrib>Lu, Xi</creatorcontrib><creatorcontrib>Xia, Shiwei</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE access</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Panpan</au><au>Song, Liangyun</au><au>Qu, Jixian</au><au>Huang, Yuehui</au><au>Wu, Xiaoyun</au><au>Lu, Xi</au><au>Xia, Shiwei</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems</atitle><jtitle>IEEE access</jtitle><stitle>Access</stitle><date>2021</date><risdate>2021</risdate><volume>9</volume><spage>111132</spage><epage>111142</epage><pages>111132-111142</pages><issn>2169-3536</issn><eissn>2169-3536</eissn><coden>IAECCG</coden><abstract>To explore the benefit of energy storage for countering high-level wind power fluctuations, a two-stage distributionally robust optimization model is proposed for wind farms and storage units (SUs) jointly operated power systems. First, the 1-norm and <inline-formula> <tex-math notation="LaTeX">\infty </tex-math></inline-formula>-norm confidence sets are presented to model the fluctuations of wind power output, then a two-stage distributionally optimization model is formed to minimize system total cost with secure operation constraints, where the ON-OFF status of generators and SUs are determined in the first stage by day-ahead dispatching, while the power output of generators, wind power curtailment, load shedding and SUs charging/discharging power are optimized in the second stage. Afterward, the column-and-constraint generation (CCG) algorithm is presented to solve the proposed two-stage model. Finally the influence of confidence level of confidence sets and SU capacities on system total cost is analyzed, and the effectiveness of the proposed model is also validated by the case studies.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/ACCESS.2021.3101569</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0003-1272-210X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2169-3536 |
ispartof | IEEE access, 2021, Vol.9, p.111132-111142 |
issn | 2169-3536 2169-3536 |
language | eng |
recordid | cdi_ieee_primary_9502683 |
source | IEEE Open Access Journals |
subjects | Algorithms CCG algorithm Confidence intervals confidence set Cost analysis Dispatching Distributionally robust optimization Energy storage Generators Load modeling Load shedding Optimization Optimization models Power systems Robustness Storage units two-stage Wind farms Wind power Wind power generation |
title | A Two-Stage Distributionally Robust Optimization Model for Wind Farms and Storage Units Jointly Operated Power Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T21%3A40%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Two-Stage%20Distributionally%20Robust%20Optimization%20Model%20for%20Wind%20Farms%20and%20Storage%20Units%20Jointly%20Operated%20Power%20Systems&rft.jtitle=IEEE%20access&rft.au=Li,%20Panpan&rft.date=2021&rft.volume=9&rft.spage=111132&rft.epage=111142&rft.pages=111132-111142&rft.issn=2169-3536&rft.eissn=2169-3536&rft.coden=IAECCG&rft_id=info:doi/10.1109/ACCESS.2021.3101569&rft_dat=%3Cproquest_ieee_%3E2560913039%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c408t-8a5950f38962f5384fdde86b3b359763340b0ecf2ae63706c70040c01cbf9bc13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2560913039&rft_id=info:pmid/&rft_ieee_id=9502683&rfr_iscdi=true |