Loading…

Explainable Prediction Of Renal Cell Carcinoma From Contrast-Enhanced CT Images Using Deep Convolutional Transfer Learning And The Shapley Additive Explanations Approach

The prediction of renal cell carcinoma (RCC) is an important cancer screening step. Existing state-of-the-art methods focus on developing machine/deep learning networks with one or more optimization strategies for higher identification accuracies. Such developments ignore the interpretability and cl...

Full description

Saved in:
Bibliographic Details
Main Authors: Han, Fuchang, Liao, Shenghui, Yuan, Siming, Wu, Renzhong, Zhao, Yuqian, Xie, Yu
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3806
container_issue
container_start_page 3802
container_title
container_volume
creator Han, Fuchang
Liao, Shenghui
Yuan, Siming
Wu, Renzhong
Zhao, Yuqian
Xie, Yu
description The prediction of renal cell carcinoma (RCC) is an important cancer screening step. Existing state-of-the-art methods focus on developing machine/deep learning networks with one or more optimization strategies for higher identification accuracies. Such developments ignore the interpretability and clinical utility of models, which are still quite opaque to clinicians. This paper introduces deep convolutional transfer learning and SHapley Additive exPlanations (SHAP) to the classification model and proposes an explainable RCC prediction model. The model evaluates the risks and benefits using decision curve analysis (DCA). Specifically, multiscale feature extraction and compensation are proposed to enrich the representations. By combining the high-importance features in a parallel manner, the models' performances are gradually enhanced. Our model achieves an accuracy of 73.87% and an area under the curve (AUC) of 0.8030 on the Hunan Cancer Hospital dataset. To demonstrate the generalizability, our model yields an accuracy of 99.81% on the public COIL-100 dataset.
doi_str_mv 10.1109/ICIP42928.2021.9506144
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9506144</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9506144</ieee_id><sourcerecordid>9506144</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-13838255345558e39a8c5952dd78462d779f0f713c0c1333be51324d642155cb3</originalsourceid><addsrcrecordid>eNotkNtKw0AYhFdBsK0-gSD7Aqn77yGHyxCrFgotml6XbfZPs5JswiYW-0i-pY32ZuZm5mMYQh6BzQFY8rTMlhvJEx7POeMwTxQLQcorMoUwVFICKLgmEy5iCGIlk1sy7ftPxjgDARPys_juam2d3tdINx6NLQbbOrou6Ts6XdMM67NoX1jXNpq--LahWesGr_shWLhKuwINzXK6bPQBe7rtrTvQZ8RujB3b-mvknUG5164v0dMVau_GUOoMzSukH5XuajzR1Bg72CPSv01Oj8Wepl3nW11Ud-Sm1HWP9xefke3LIs_egtX6dZmlq8ByJoYARCxirpSQSqkYRaLjQiWKGxPFMuQmipKSlRGIghUghNijAsGlCSUHpYq9mJGHf65FxF3nbaP9aXe5VfwChnFt9Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Explainable Prediction Of Renal Cell Carcinoma From Contrast-Enhanced CT Images Using Deep Convolutional Transfer Learning And The Shapley Additive Explanations Approach</title><source>IEEE Xplore All Conference Series</source><creator>Han, Fuchang ; Liao, Shenghui ; Yuan, Siming ; Wu, Renzhong ; Zhao, Yuqian ; Xie, Yu</creator><creatorcontrib>Han, Fuchang ; Liao, Shenghui ; Yuan, Siming ; Wu, Renzhong ; Zhao, Yuqian ; Xie, Yu</creatorcontrib><description>The prediction of renal cell carcinoma (RCC) is an important cancer screening step. Existing state-of-the-art methods focus on developing machine/deep learning networks with one or more optimization strategies for higher identification accuracies. Such developments ignore the interpretability and clinical utility of models, which are still quite opaque to clinicians. This paper introduces deep convolutional transfer learning and SHapley Additive exPlanations (SHAP) to the classification model and proposes an explainable RCC prediction model. The model evaluates the risks and benefits using decision curve analysis (DCA). Specifically, multiscale feature extraction and compensation are proposed to enrich the representations. By combining the high-importance features in a parallel manner, the models' performances are gradually enhanced. Our model achieves an accuracy of 73.87% and an area under the curve (AUC) of 0.8030 on the Hunan Cancer Hospital dataset. To demonstrate the generalizability, our model yields an accuracy of 99.81% on the public COIL-100 dataset.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 1665441151</identifier><identifier>EISBN: 9781665441155</identifier><identifier>DOI: 10.1109/ICIP42928.2021.9506144</identifier><language>eng</language><publisher>IEEE</publisher><subject>Additives ; Analytical models ; Computed tomography ; Extra trees ; Hospitals ; Malignant tumors ; Predictive models ; Renal cell carcinoma ; ResNet-101 ; SHapley Additive exPlanations ; Transfer learning</subject><ispartof>2021 IEEE International Conference on Image Processing (ICIP), 2021, p.3802-3806</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9506144$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9506144$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Han, Fuchang</creatorcontrib><creatorcontrib>Liao, Shenghui</creatorcontrib><creatorcontrib>Yuan, Siming</creatorcontrib><creatorcontrib>Wu, Renzhong</creatorcontrib><creatorcontrib>Zhao, Yuqian</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><title>Explainable Prediction Of Renal Cell Carcinoma From Contrast-Enhanced CT Images Using Deep Convolutional Transfer Learning And The Shapley Additive Explanations Approach</title><title>2021 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>The prediction of renal cell carcinoma (RCC) is an important cancer screening step. Existing state-of-the-art methods focus on developing machine/deep learning networks with one or more optimization strategies for higher identification accuracies. Such developments ignore the interpretability and clinical utility of models, which are still quite opaque to clinicians. This paper introduces deep convolutional transfer learning and SHapley Additive exPlanations (SHAP) to the classification model and proposes an explainable RCC prediction model. The model evaluates the risks and benefits using decision curve analysis (DCA). Specifically, multiscale feature extraction and compensation are proposed to enrich the representations. By combining the high-importance features in a parallel manner, the models' performances are gradually enhanced. Our model achieves an accuracy of 73.87% and an area under the curve (AUC) of 0.8030 on the Hunan Cancer Hospital dataset. To demonstrate the generalizability, our model yields an accuracy of 99.81% on the public COIL-100 dataset.</description><subject>Additives</subject><subject>Analytical models</subject><subject>Computed tomography</subject><subject>Extra trees</subject><subject>Hospitals</subject><subject>Malignant tumors</subject><subject>Predictive models</subject><subject>Renal cell carcinoma</subject><subject>ResNet-101</subject><subject>SHapley Additive exPlanations</subject><subject>Transfer learning</subject><issn>2381-8549</issn><isbn>1665441151</isbn><isbn>9781665441155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNtKw0AYhFdBsK0-gSD7Aqn77yGHyxCrFgotml6XbfZPs5JswiYW-0i-pY32ZuZm5mMYQh6BzQFY8rTMlhvJEx7POeMwTxQLQcorMoUwVFICKLgmEy5iCGIlk1sy7ftPxjgDARPys_juam2d3tdINx6NLQbbOrou6Ts6XdMM67NoX1jXNpq--LahWesGr_shWLhKuwINzXK6bPQBe7rtrTvQZ8RujB3b-mvknUG5164v0dMVau_GUOoMzSukH5XuajzR1Bg72CPSv01Oj8Wepl3nW11Ud-Sm1HWP9xefke3LIs_egtX6dZmlq8ByJoYARCxirpSQSqkYRaLjQiWKGxPFMuQmipKSlRGIghUghNijAsGlCSUHpYq9mJGHf65FxF3nbaP9aXe5VfwChnFt9Q</recordid><startdate>20210919</startdate><enddate>20210919</enddate><creator>Han, Fuchang</creator><creator>Liao, Shenghui</creator><creator>Yuan, Siming</creator><creator>Wu, Renzhong</creator><creator>Zhao, Yuqian</creator><creator>Xie, Yu</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210919</creationdate><title>Explainable Prediction Of Renal Cell Carcinoma From Contrast-Enhanced CT Images Using Deep Convolutional Transfer Learning And The Shapley Additive Explanations Approach</title><author>Han, Fuchang ; Liao, Shenghui ; Yuan, Siming ; Wu, Renzhong ; Zhao, Yuqian ; Xie, Yu</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-13838255345558e39a8c5952dd78462d779f0f713c0c1333be51324d642155cb3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Additives</topic><topic>Analytical models</topic><topic>Computed tomography</topic><topic>Extra trees</topic><topic>Hospitals</topic><topic>Malignant tumors</topic><topic>Predictive models</topic><topic>Renal cell carcinoma</topic><topic>ResNet-101</topic><topic>SHapley Additive exPlanations</topic><topic>Transfer learning</topic><toplevel>online_resources</toplevel><creatorcontrib>Han, Fuchang</creatorcontrib><creatorcontrib>Liao, Shenghui</creatorcontrib><creatorcontrib>Yuan, Siming</creatorcontrib><creatorcontrib>Wu, Renzhong</creatorcontrib><creatorcontrib>Zhao, Yuqian</creatorcontrib><creatorcontrib>Xie, Yu</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Han, Fuchang</au><au>Liao, Shenghui</au><au>Yuan, Siming</au><au>Wu, Renzhong</au><au>Zhao, Yuqian</au><au>Xie, Yu</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Explainable Prediction Of Renal Cell Carcinoma From Contrast-Enhanced CT Images Using Deep Convolutional Transfer Learning And The Shapley Additive Explanations Approach</atitle><btitle>2021 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2021-09-19</date><risdate>2021</risdate><spage>3802</spage><epage>3806</epage><pages>3802-3806</pages><eissn>2381-8549</eissn><eisbn>1665441151</eisbn><eisbn>9781665441155</eisbn><abstract>The prediction of renal cell carcinoma (RCC) is an important cancer screening step. Existing state-of-the-art methods focus on developing machine/deep learning networks with one or more optimization strategies for higher identification accuracies. Such developments ignore the interpretability and clinical utility of models, which are still quite opaque to clinicians. This paper introduces deep convolutional transfer learning and SHapley Additive exPlanations (SHAP) to the classification model and proposes an explainable RCC prediction model. The model evaluates the risks and benefits using decision curve analysis (DCA). Specifically, multiscale feature extraction and compensation are proposed to enrich the representations. By combining the high-importance features in a parallel manner, the models' performances are gradually enhanced. Our model achieves an accuracy of 73.87% and an area under the curve (AUC) of 0.8030 on the Hunan Cancer Hospital dataset. To demonstrate the generalizability, our model yields an accuracy of 99.81% on the public COIL-100 dataset.</abstract><pub>IEEE</pub><doi>10.1109/ICIP42928.2021.9506144</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2021 IEEE International Conference on Image Processing (ICIP), 2021, p.3802-3806
issn 2381-8549
language eng
recordid cdi_ieee_primary_9506144
source IEEE Xplore All Conference Series
subjects Additives
Analytical models
Computed tomography
Extra trees
Hospitals
Malignant tumors
Predictive models
Renal cell carcinoma
ResNet-101
SHapley Additive exPlanations
Transfer learning
title Explainable Prediction Of Renal Cell Carcinoma From Contrast-Enhanced CT Images Using Deep Convolutional Transfer Learning And The Shapley Additive Explanations Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T23%3A48%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Explainable%20Prediction%20Of%20Renal%20Cell%20Carcinoma%20From%20Contrast-Enhanced%20CT%20Images%20Using%20Deep%20Convolutional%20Transfer%20Learning%20And%20The%20Shapley%20Additive%20Explanations%20Approach&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Han,%20Fuchang&rft.date=2021-09-19&rft.spage=3802&rft.epage=3806&rft.pages=3802-3806&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP42928.2021.9506144&rft.eisbn=1665441151&rft.eisbn_list=9781665441155&rft_dat=%3Cieee_CHZPO%3E9506144%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-13838255345558e39a8c5952dd78462d779f0f713c0c1333be51324d642155cb3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9506144&rfr_iscdi=true