Loading…
Separable Convolutions for Optimizing 3D Stereo Networks
Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Sp...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3212 |
container_issue | |
container_start_page | 3208 |
container_title | |
container_volume | |
creator | Rahim, Rafia Shamsafar, Faranak Zell, Andreas |
description | Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Specifically, these networks use 3D convolutions as a major work horse to refine and regress disparities. In this work first, we show that these 3D convolutions in stereo networks consume up to 94% of overall network operations and act as a major bottleneck. Next, we propose a set of "plug-&-run" separable convolutions to reduce the number of parameters and operations. When integrated with the existing state of the art stereo networks, these convolutions lead up to 7\times reduction in number of operations and up to 3.5\times reduction in parameters without compromising their performance. In fact these convolutions lead to improvement in their performance in the majority of cases 1 1 This work is part of the project DeepStereoVision (FRE: 01IS18024B) sponsored by the German Ministry of Education & Research (BMBF). |
doi_str_mv | 10.1109/ICIP42928.2021.9506330 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9506330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9506330</ieee_id><sourcerecordid>9506330</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-dafa0f732fdfe0a27c999436c6ec54b54374331d89174fcbd51419781e0f2e503</originalsourceid><addsrcrecordid>eNotz9FKwzAUgOEoCG7TJxAkL9B6Tk7SNpdSdRaGE6bXI21PJNq1Ja2KPr0X7uq_--AX4hohRQR7U5XVs1ZWFakChak1kBHBiVhilhmtEQ2eioWiApPCaHsultP0DqAACRei2PHooqs7luXQfw3d5xyGfpJ-iHI7zuEQfkP_JulO7maOPMgnnr-H-DFdiDPvuokvj12J14f7l_Ix2WzXVXm7SYICmpPWeQc-J-Vbz-BU3lhrNWVNxo3RtdGUayJsC4u59k3dGtRo8wIZvGIDtBJX_25g5v0Yw8HFn_3xkv4AmkxGnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Separable Convolutions for Optimizing 3D Stereo Networks</title><source>IEEE Xplore All Conference Series</source><creator>Rahim, Rafia ; Shamsafar, Faranak ; Zell, Andreas</creator><creatorcontrib>Rahim, Rafia ; Shamsafar, Faranak ; Zell, Andreas</creatorcontrib><description>Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Specifically, these networks use 3D convolutions as a major work horse to refine and regress disparities. In this work first, we show that these 3D convolutions in stereo networks consume up to 94% of overall network operations and act as a major bottleneck. Next, we propose a set of "plug-&-run" separable convolutions to reduce the number of parameters and operations. When integrated with the existing state of the art stereo networks, these convolutions lead up to 7\times reduction in number of operations and up to 3.5\times reduction in parameters without compromising their performance. In fact these convolutions lead to improvement in their performance in the majority of cases 1 1 This work is part of the project DeepStereoVision (FRE: 01IS18024B) sponsored by the German Ministry of Education & Research (BMBF).</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 1665441151</identifier><identifier>EISBN: 9781665441155</identifier><identifier>DOI: 10.1109/ICIP42928.2021.9506330</identifier><language>eng</language><publisher>IEEE</publisher><subject>CNNs ; Computational complexity ; Computational Efficiency ; Conferences ; Deep learning ; Disparity Estimation ; Image processing ; Separable Convolutions ; Stereo Matching ; Three-dimensional displays</subject><ispartof>2021 IEEE International Conference on Image Processing (ICIP), 2021, p.3208-3212</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9506330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9506330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahim, Rafia</creatorcontrib><creatorcontrib>Shamsafar, Faranak</creatorcontrib><creatorcontrib>Zell, Andreas</creatorcontrib><title>Separable Convolutions for Optimizing 3D Stereo Networks</title><title>2021 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Specifically, these networks use 3D convolutions as a major work horse to refine and regress disparities. In this work first, we show that these 3D convolutions in stereo networks consume up to 94% of overall network operations and act as a major bottleneck. Next, we propose a set of "plug-&-run" separable convolutions to reduce the number of parameters and operations. When integrated with the existing state of the art stereo networks, these convolutions lead up to 7\times reduction in number of operations and up to 3.5\times reduction in parameters without compromising their performance. In fact these convolutions lead to improvement in their performance in the majority of cases 1 1 This work is part of the project DeepStereoVision (FRE: 01IS18024B) sponsored by the German Ministry of Education & Research (BMBF).</description><subject>CNNs</subject><subject>Computational complexity</subject><subject>Computational Efficiency</subject><subject>Conferences</subject><subject>Deep learning</subject><subject>Disparity Estimation</subject><subject>Image processing</subject><subject>Separable Convolutions</subject><subject>Stereo Matching</subject><subject>Three-dimensional displays</subject><issn>2381-8549</issn><isbn>1665441151</isbn><isbn>9781665441155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz9FKwzAUgOEoCG7TJxAkL9B6Tk7SNpdSdRaGE6bXI21PJNq1Ja2KPr0X7uq_--AX4hohRQR7U5XVs1ZWFakChak1kBHBiVhilhmtEQ2eioWiApPCaHsultP0DqAACRei2PHooqs7luXQfw3d5xyGfpJ-iHI7zuEQfkP_JulO7maOPMgnnr-H-DFdiDPvuokvj12J14f7l_Ix2WzXVXm7SYICmpPWeQc-J-Vbz-BU3lhrNWVNxo3RtdGUayJsC4u59k3dGtRo8wIZvGIDtBJX_25g5v0Yw8HFn_3xkv4AmkxGnA</recordid><startdate>20210919</startdate><enddate>20210919</enddate><creator>Rahim, Rafia</creator><creator>Shamsafar, Faranak</creator><creator>Zell, Andreas</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210919</creationdate><title>Separable Convolutions for Optimizing 3D Stereo Networks</title><author>Rahim, Rafia ; Shamsafar, Faranak ; Zell, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-dafa0f732fdfe0a27c999436c6ec54b54374331d89174fcbd51419781e0f2e503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CNNs</topic><topic>Computational complexity</topic><topic>Computational Efficiency</topic><topic>Conferences</topic><topic>Deep learning</topic><topic>Disparity Estimation</topic><topic>Image processing</topic><topic>Separable Convolutions</topic><topic>Stereo Matching</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahim, Rafia</creatorcontrib><creatorcontrib>Shamsafar, Faranak</creatorcontrib><creatorcontrib>Zell, Andreas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahim, Rafia</au><au>Shamsafar, Faranak</au><au>Zell, Andreas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Separable Convolutions for Optimizing 3D Stereo Networks</atitle><btitle>2021 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2021-09-19</date><risdate>2021</risdate><spage>3208</spage><epage>3212</epage><pages>3208-3212</pages><eissn>2381-8549</eissn><eisbn>1665441151</eisbn><eisbn>9781665441155</eisbn><abstract>Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Specifically, these networks use 3D convolutions as a major work horse to refine and regress disparities. In this work first, we show that these 3D convolutions in stereo networks consume up to 94% of overall network operations and act as a major bottleneck. Next, we propose a set of "plug-&-run" separable convolutions to reduce the number of parameters and operations. When integrated with the existing state of the art stereo networks, these convolutions lead up to 7\times reduction in number of operations and up to 3.5\times reduction in parameters without compromising their performance. In fact these convolutions lead to improvement in their performance in the majority of cases 1 1 This work is part of the project DeepStereoVision (FRE: 01IS18024B) sponsored by the German Ministry of Education & Research (BMBF).</abstract><pub>IEEE</pub><doi>10.1109/ICIP42928.2021.9506330</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2381-8549 |
ispartof | 2021 IEEE International Conference on Image Processing (ICIP), 2021, p.3208-3212 |
issn | 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_9506330 |
source | IEEE Xplore All Conference Series |
subjects | CNNs Computational complexity Computational Efficiency Conferences Deep learning Disparity Estimation Image processing Separable Convolutions Stereo Matching Three-dimensional displays |
title | Separable Convolutions for Optimizing 3D Stereo Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Separable%20Convolutions%20for%20Optimizing%203D%20Stereo%20Networks&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Rahim,%20Rafia&rft.date=2021-09-19&rft.spage=3208&rft.epage=3212&rft.pages=3208-3212&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP42928.2021.9506330&rft.eisbn=1665441151&rft.eisbn_list=9781665441155&rft_dat=%3Cieee_CHZPO%3E9506330%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-dafa0f732fdfe0a27c999436c6ec54b54374331d89174fcbd51419781e0f2e503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9506330&rfr_iscdi=true |