Loading…

Separable Convolutions for Optimizing 3D Stereo Networks

Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Sp...

Full description

Saved in:
Bibliographic Details
Main Authors: Rahim, Rafia, Shamsafar, Faranak, Zell, Andreas
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 3212
container_issue
container_start_page 3208
container_title
container_volume
creator Rahim, Rafia
Shamsafar, Faranak
Zell, Andreas
description Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Specifically, these networks use 3D convolutions as a major work horse to refine and regress disparities. In this work first, we show that these 3D convolutions in stereo networks consume up to 94% of overall network operations and act as a major bottleneck. Next, we propose a set of "plug-&-run" separable convolutions to reduce the number of parameters and operations. When integrated with the existing state of the art stereo networks, these convolutions lead up to 7\times reduction in number of operations and up to 3.5\times reduction in parameters without compromising their performance. In fact these convolutions lead to improvement in their performance in the majority of cases 1 1 This work is part of the project DeepStereoVision (FRE: 01IS18024B) sponsored by the German Ministry of Education & Research (BMBF).
doi_str_mv 10.1109/ICIP42928.2021.9506330
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9506330</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9506330</ieee_id><sourcerecordid>9506330</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-dafa0f732fdfe0a27c999436c6ec54b54374331d89174fcbd51419781e0f2e503</originalsourceid><addsrcrecordid>eNotz9FKwzAUgOEoCG7TJxAkL9B6Tk7SNpdSdRaGE6bXI21PJNq1Ja2KPr0X7uq_--AX4hohRQR7U5XVs1ZWFakChak1kBHBiVhilhmtEQ2eioWiApPCaHsultP0DqAACRei2PHooqs7luXQfw3d5xyGfpJ-iHI7zuEQfkP_JulO7maOPMgnnr-H-DFdiDPvuokvj12J14f7l_Ix2WzXVXm7SYICmpPWeQc-J-Vbz-BU3lhrNWVNxo3RtdGUayJsC4u59k3dGtRo8wIZvGIDtBJX_25g5v0Yw8HFn_3xkv4AmkxGnA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Separable Convolutions for Optimizing 3D Stereo Networks</title><source>IEEE Xplore All Conference Series</source><creator>Rahim, Rafia ; Shamsafar, Faranak ; Zell, Andreas</creator><creatorcontrib>Rahim, Rafia ; Shamsafar, Faranak ; Zell, Andreas</creatorcontrib><description>Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Specifically, these networks use 3D convolutions as a major work horse to refine and regress disparities. In this work first, we show that these 3D convolutions in stereo networks consume up to 94% of overall network operations and act as a major bottleneck. Next, we propose a set of "plug-&amp;-run" separable convolutions to reduce the number of parameters and operations. When integrated with the existing state of the art stereo networks, these convolutions lead up to 7\times reduction in number of operations and up to 3.5\times reduction in parameters without compromising their performance. In fact these convolutions lead to improvement in their performance in the majority of cases 1 1 This work is part of the project DeepStereoVision (FRE: 01IS18024B) sponsored by the German Ministry of Education &amp; Research (BMBF).</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 1665441151</identifier><identifier>EISBN: 9781665441155</identifier><identifier>DOI: 10.1109/ICIP42928.2021.9506330</identifier><language>eng</language><publisher>IEEE</publisher><subject>CNNs ; Computational complexity ; Computational Efficiency ; Conferences ; Deep learning ; Disparity Estimation ; Image processing ; Separable Convolutions ; Stereo Matching ; Three-dimensional displays</subject><ispartof>2021 IEEE International Conference on Image Processing (ICIP), 2021, p.3208-3212</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9506330$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9506330$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Rahim, Rafia</creatorcontrib><creatorcontrib>Shamsafar, Faranak</creatorcontrib><creatorcontrib>Zell, Andreas</creatorcontrib><title>Separable Convolutions for Optimizing 3D Stereo Networks</title><title>2021 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Specifically, these networks use 3D convolutions as a major work horse to refine and regress disparities. In this work first, we show that these 3D convolutions in stereo networks consume up to 94% of overall network operations and act as a major bottleneck. Next, we propose a set of "plug-&amp;-run" separable convolutions to reduce the number of parameters and operations. When integrated with the existing state of the art stereo networks, these convolutions lead up to 7\times reduction in number of operations and up to 3.5\times reduction in parameters without compromising their performance. In fact these convolutions lead to improvement in their performance in the majority of cases 1 1 This work is part of the project DeepStereoVision (FRE: 01IS18024B) sponsored by the German Ministry of Education &amp; Research (BMBF).</description><subject>CNNs</subject><subject>Computational complexity</subject><subject>Computational Efficiency</subject><subject>Conferences</subject><subject>Deep learning</subject><subject>Disparity Estimation</subject><subject>Image processing</subject><subject>Separable Convolutions</subject><subject>Stereo Matching</subject><subject>Three-dimensional displays</subject><issn>2381-8549</issn><isbn>1665441151</isbn><isbn>9781665441155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz9FKwzAUgOEoCG7TJxAkL9B6Tk7SNpdSdRaGE6bXI21PJNq1Ja2KPr0X7uq_--AX4hohRQR7U5XVs1ZWFakChak1kBHBiVhilhmtEQ2eioWiApPCaHsultP0DqAACRei2PHooqs7luXQfw3d5xyGfpJ-iHI7zuEQfkP_JulO7maOPMgnnr-H-DFdiDPvuokvj12J14f7l_Ix2WzXVXm7SYICmpPWeQc-J-Vbz-BU3lhrNWVNxo3RtdGUayJsC4u59k3dGtRo8wIZvGIDtBJX_25g5v0Yw8HFn_3xkv4AmkxGnA</recordid><startdate>20210919</startdate><enddate>20210919</enddate><creator>Rahim, Rafia</creator><creator>Shamsafar, Faranak</creator><creator>Zell, Andreas</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210919</creationdate><title>Separable Convolutions for Optimizing 3D Stereo Networks</title><author>Rahim, Rafia ; Shamsafar, Faranak ; Zell, Andreas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-dafa0f732fdfe0a27c999436c6ec54b54374331d89174fcbd51419781e0f2e503</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>CNNs</topic><topic>Computational complexity</topic><topic>Computational Efficiency</topic><topic>Conferences</topic><topic>Deep learning</topic><topic>Disparity Estimation</topic><topic>Image processing</topic><topic>Separable Convolutions</topic><topic>Stereo Matching</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Rahim, Rafia</creatorcontrib><creatorcontrib>Shamsafar, Faranak</creatorcontrib><creatorcontrib>Zell, Andreas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Rahim, Rafia</au><au>Shamsafar, Faranak</au><au>Zell, Andreas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Separable Convolutions for Optimizing 3D Stereo Networks</atitle><btitle>2021 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2021-09-19</date><risdate>2021</risdate><spage>3208</spage><epage>3212</epage><pages>3208-3212</pages><eissn>2381-8549</eissn><eisbn>1665441151</eisbn><eisbn>9781665441155</eisbn><abstract>Deep learning based 3D stereo networks give superior performance compared to 2D networks and conventional stereo methods. However, this improvement in the performance comes at the cost of increased computational complexity, thus making these networks non-practical for the real-world applications. Specifically, these networks use 3D convolutions as a major work horse to refine and regress disparities. In this work first, we show that these 3D convolutions in stereo networks consume up to 94% of overall network operations and act as a major bottleneck. Next, we propose a set of "plug-&amp;-run" separable convolutions to reduce the number of parameters and operations. When integrated with the existing state of the art stereo networks, these convolutions lead up to 7\times reduction in number of operations and up to 3.5\times reduction in parameters without compromising their performance. In fact these convolutions lead to improvement in their performance in the majority of cases 1 1 This work is part of the project DeepStereoVision (FRE: 01IS18024B) sponsored by the German Ministry of Education &amp; Research (BMBF).</abstract><pub>IEEE</pub><doi>10.1109/ICIP42928.2021.9506330</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2021 IEEE International Conference on Image Processing (ICIP), 2021, p.3208-3212
issn 2381-8549
language eng
recordid cdi_ieee_primary_9506330
source IEEE Xplore All Conference Series
subjects CNNs
Computational complexity
Computational Efficiency
Conferences
Deep learning
Disparity Estimation
Image processing
Separable Convolutions
Stereo Matching
Three-dimensional displays
title Separable Convolutions for Optimizing 3D Stereo Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T19%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Separable%20Convolutions%20for%20Optimizing%203D%20Stereo%20Networks&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Rahim,%20Rafia&rft.date=2021-09-19&rft.spage=3208&rft.epage=3212&rft.pages=3208-3212&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP42928.2021.9506330&rft.eisbn=1665441151&rft.eisbn_list=9781665441155&rft_dat=%3Cieee_CHZPO%3E9506330%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-dafa0f732fdfe0a27c999436c6ec54b54374331d89174fcbd51419781e0f2e503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9506330&rfr_iscdi=true