Loading…

PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing

This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance...

Full description

Saved in:
Bibliographic Details
Main Authors: Le, Ngan, Sorensen, James, Bui, Toan Duc, Choudhary, Arabinda, Luu, Khoa, Nguyen, Hien
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 219
container_issue
container_start_page 215
container_title
container_volume
creator Le, Ngan
Sorensen, James
Bui, Toan Duc
Choudhary, Arabinda
Luu, Khoa
Nguyen, Hien
description This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance the quality of p_CXR to be more consistent, and to more closely match higher quality conventional CXR (c_CXR). The contributions of this work are four folds. Firstly, a new database collection of subject-pair CXR is introduced and available to download. Secondly, a new deep learning-based alignment approach is presented to align subject-pairs dataset to obtain pixel-pairs dataset. Thirdly, a new Pair-Flow approach, an end-to-end invertible transfer deep learning method, to enhance the degraded quality of p_CXR. Finally, the performance of the proposed system is evaluated at both image quality and topological properties.
doi_str_mv 10.1109/ICIP42928.2021.9506579
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9506579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9506579</ieee_id><sourcerecordid>9506579</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-28287c11b82d048cce5547705b997fc216824a21625c05f5b88849f1743a8933</originalsourceid><addsrcrecordid>eNotkEFLwzAYQKMguE1_gSD5A6n5viRt4s11qxYGFtlBvIy0TbdI10hblP57J-70Lo93eITcA48AuHnI07yQaFBHyBEio3isEnNB5hDHSkoABZdkhkID00qaazIfhk_OkYOAGfkorO-zNvw80nV3sF3luz0tQj_asnU0PbhhpO_szU50OdE_jy3t4Gq6ck3oj3b0oaNZ6Gkavn3NwNCVt_suDKfMDblqbDu42zMXZJutt-kL27w-5-nThnnkYmSoUScVQKmx5lJXlVNKJglXpTFJUyHEGqU9AVXFVaNKrbU0DSRSWG2EWJC7_6x3zu2-en-0_bQ7bxC_kMJPtA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing</title><source>IEEE Xplore All Conference Series</source><creator>Le, Ngan ; Sorensen, James ; Bui, Toan Duc ; Choudhary, Arabinda ; Luu, Khoa ; Nguyen, Hien</creator><creatorcontrib>Le, Ngan ; Sorensen, James ; Bui, Toan Duc ; Choudhary, Arabinda ; Luu, Khoa ; Nguyen, Hien</creatorcontrib><description>This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance the quality of p_CXR to be more consistent, and to more closely match higher quality conventional CXR (c_CXR). The contributions of this work are four folds. Firstly, a new database collection of subject-pair CXR is introduced and available to download. Secondly, a new deep learning-based alignment approach is presented to align subject-pairs dataset to obtain pixel-pairs dataset. Thirdly, a new Pair-Flow approach, an end-to-end invertible transfer deep learning method, to enhance the degraded quality of p_CXR. Finally, the performance of the proposed system is evaluated at both image quality and topological properties.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 1665441151</identifier><identifier>EISBN: 9781665441155</identifier><identifier>DOI: 10.1109/ICIP42928.2021.9506579</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chest Xray ; COVID ; COVID-19 ; Deep learning ; Enhancement ; Flow-based Deformation ; Image processing ; Image quality ; Image-to-Image Translation ; Lung ; Neurons ; Pandemics</subject><ispartof>2021 IEEE International Conference on Image Processing (ICIP), 2021, p.215-219</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9506579$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9506579$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Le, Ngan</creatorcontrib><creatorcontrib>Sorensen, James</creatorcontrib><creatorcontrib>Bui, Toan Duc</creatorcontrib><creatorcontrib>Choudhary, Arabinda</creatorcontrib><creatorcontrib>Luu, Khoa</creatorcontrib><creatorcontrib>Nguyen, Hien</creatorcontrib><title>PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing</title><title>2021 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance the quality of p_CXR to be more consistent, and to more closely match higher quality conventional CXR (c_CXR). The contributions of this work are four folds. Firstly, a new database collection of subject-pair CXR is introduced and available to download. Secondly, a new deep learning-based alignment approach is presented to align subject-pairs dataset to obtain pixel-pairs dataset. Thirdly, a new Pair-Flow approach, an end-to-end invertible transfer deep learning method, to enhance the degraded quality of p_CXR. Finally, the performance of the proposed system is evaluated at both image quality and topological properties.</description><subject>Chest Xray</subject><subject>COVID</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Enhancement</subject><subject>Flow-based Deformation</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image-to-Image Translation</subject><subject>Lung</subject><subject>Neurons</subject><subject>Pandemics</subject><issn>2381-8549</issn><isbn>1665441151</isbn><isbn>9781665441155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEFLwzAYQKMguE1_gSD5A6n5viRt4s11qxYGFtlBvIy0TbdI10hblP57J-70Lo93eITcA48AuHnI07yQaFBHyBEio3isEnNB5hDHSkoABZdkhkID00qaazIfhk_OkYOAGfkorO-zNvw80nV3sF3luz0tQj_asnU0PbhhpO_szU50OdE_jy3t4Gq6ck3oj3b0oaNZ6Gkavn3NwNCVt_suDKfMDblqbDu42zMXZJutt-kL27w-5-nThnnkYmSoUScVQKmx5lJXlVNKJglXpTFJUyHEGqU9AVXFVaNKrbU0DSRSWG2EWJC7_6x3zu2-en-0_bQ7bxC_kMJPtA</recordid><startdate>20210919</startdate><enddate>20210919</enddate><creator>Le, Ngan</creator><creator>Sorensen, James</creator><creator>Bui, Toan Duc</creator><creator>Choudhary, Arabinda</creator><creator>Luu, Khoa</creator><creator>Nguyen, Hien</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210919</creationdate><title>PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing</title><author>Le, Ngan ; Sorensen, James ; Bui, Toan Duc ; Choudhary, Arabinda ; Luu, Khoa ; Nguyen, Hien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-28287c11b82d048cce5547705b997fc216824a21625c05f5b88849f1743a8933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chest Xray</topic><topic>COVID</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Enhancement</topic><topic>Flow-based Deformation</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image-to-Image Translation</topic><topic>Lung</topic><topic>Neurons</topic><topic>Pandemics</topic><toplevel>online_resources</toplevel><creatorcontrib>Le, Ngan</creatorcontrib><creatorcontrib>Sorensen, James</creatorcontrib><creatorcontrib>Bui, Toan Duc</creatorcontrib><creatorcontrib>Choudhary, Arabinda</creatorcontrib><creatorcontrib>Luu, Khoa</creatorcontrib><creatorcontrib>Nguyen, Hien</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le, Ngan</au><au>Sorensen, James</au><au>Bui, Toan Duc</au><au>Choudhary, Arabinda</au><au>Luu, Khoa</au><au>Nguyen, Hien</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing</atitle><btitle>2021 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2021-09-19</date><risdate>2021</risdate><spage>215</spage><epage>219</epage><pages>215-219</pages><eissn>2381-8549</eissn><eisbn>1665441151</eisbn><eisbn>9781665441155</eisbn><abstract>This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance the quality of p_CXR to be more consistent, and to more closely match higher quality conventional CXR (c_CXR). The contributions of this work are four folds. Firstly, a new database collection of subject-pair CXR is introduced and available to download. Secondly, a new deep learning-based alignment approach is presented to align subject-pairs dataset to obtain pixel-pairs dataset. Thirdly, a new Pair-Flow approach, an end-to-end invertible transfer deep learning method, to enhance the degraded quality of p_CXR. Finally, the performance of the proposed system is evaluated at both image quality and topological properties.</abstract><pub>IEEE</pub><doi>10.1109/ICIP42928.2021.9506579</doi><tpages>5</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2381-8549
ispartof 2021 IEEE International Conference on Image Processing (ICIP), 2021, p.215-219
issn 2381-8549
language eng
recordid cdi_ieee_primary_9506579
source IEEE Xplore All Conference Series
subjects Chest Xray
COVID
COVID-19
Deep learning
Enhancement
Flow-based Deformation
Image processing
Image quality
Image-to-Image Translation
Lung
Neurons
Pandemics
title PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T10%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PairFlow:%20Enhancing%20Portable%20Chest%20X-Ray%20By%20Flow-Based%20Deformation%20For%20Covid-19%20Diagnosing&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Le,%20Ngan&rft.date=2021-09-19&rft.spage=215&rft.epage=219&rft.pages=215-219&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP42928.2021.9506579&rft.eisbn=1665441151&rft.eisbn_list=9781665441155&rft_dat=%3Cieee_CHZPO%3E9506579%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-28287c11b82d048cce5547705b997fc216824a21625c05f5b88849f1743a8933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9506579&rfr_iscdi=true