Loading…
PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing
This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 219 |
container_issue | |
container_start_page | 215 |
container_title | |
container_volume | |
creator | Le, Ngan Sorensen, James Bui, Toan Duc Choudhary, Arabinda Luu, Khoa Nguyen, Hien |
description | This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance the quality of p_CXR to be more consistent, and to more closely match higher quality conventional CXR (c_CXR). The contributions of this work are four folds. Firstly, a new database collection of subject-pair CXR is introduced and available to download. Secondly, a new deep learning-based alignment approach is presented to align subject-pairs dataset to obtain pixel-pairs dataset. Thirdly, a new Pair-Flow approach, an end-to-end invertible transfer deep learning method, to enhance the degraded quality of p_CXR. Finally, the performance of the proposed system is evaluated at both image quality and topological properties. |
doi_str_mv | 10.1109/ICIP42928.2021.9506579 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9506579</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9506579</ieee_id><sourcerecordid>9506579</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-28287c11b82d048cce5547705b997fc216824a21625c05f5b88849f1743a8933</originalsourceid><addsrcrecordid>eNotkEFLwzAYQKMguE1_gSD5A6n5viRt4s11qxYGFtlBvIy0TbdI10hblP57J-70Lo93eITcA48AuHnI07yQaFBHyBEio3isEnNB5hDHSkoABZdkhkID00qaazIfhk_OkYOAGfkorO-zNvw80nV3sF3luz0tQj_asnU0PbhhpO_szU50OdE_jy3t4Gq6ck3oj3b0oaNZ6Gkavn3NwNCVt_suDKfMDblqbDu42zMXZJutt-kL27w-5-nThnnkYmSoUScVQKmx5lJXlVNKJglXpTFJUyHEGqU9AVXFVaNKrbU0DSRSWG2EWJC7_6x3zu2-en-0_bQ7bxC_kMJPtA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing</title><source>IEEE Xplore All Conference Series</source><creator>Le, Ngan ; Sorensen, James ; Bui, Toan Duc ; Choudhary, Arabinda ; Luu, Khoa ; Nguyen, Hien</creator><creatorcontrib>Le, Ngan ; Sorensen, James ; Bui, Toan Duc ; Choudhary, Arabinda ; Luu, Khoa ; Nguyen, Hien</creatorcontrib><description>This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance the quality of p_CXR to be more consistent, and to more closely match higher quality conventional CXR (c_CXR). The contributions of this work are four folds. Firstly, a new database collection of subject-pair CXR is introduced and available to download. Secondly, a new deep learning-based alignment approach is presented to align subject-pairs dataset to obtain pixel-pairs dataset. Thirdly, a new Pair-Flow approach, an end-to-end invertible transfer deep learning method, to enhance the degraded quality of p_CXR. Finally, the performance of the proposed system is evaluated at both image quality and topological properties.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 1665441151</identifier><identifier>EISBN: 9781665441155</identifier><identifier>DOI: 10.1109/ICIP42928.2021.9506579</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chest Xray ; COVID ; COVID-19 ; Deep learning ; Enhancement ; Flow-based Deformation ; Image processing ; Image quality ; Image-to-Image Translation ; Lung ; Neurons ; Pandemics</subject><ispartof>2021 IEEE International Conference on Image Processing (ICIP), 2021, p.215-219</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9506579$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9506579$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Le, Ngan</creatorcontrib><creatorcontrib>Sorensen, James</creatorcontrib><creatorcontrib>Bui, Toan Duc</creatorcontrib><creatorcontrib>Choudhary, Arabinda</creatorcontrib><creatorcontrib>Luu, Khoa</creatorcontrib><creatorcontrib>Nguyen, Hien</creatorcontrib><title>PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing</title><title>2021 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance the quality of p_CXR to be more consistent, and to more closely match higher quality conventional CXR (c_CXR). The contributions of this work are four folds. Firstly, a new database collection of subject-pair CXR is introduced and available to download. Secondly, a new deep learning-based alignment approach is presented to align subject-pairs dataset to obtain pixel-pairs dataset. Thirdly, a new Pair-Flow approach, an end-to-end invertible transfer deep learning method, to enhance the degraded quality of p_CXR. Finally, the performance of the proposed system is evaluated at both image quality and topological properties.</description><subject>Chest Xray</subject><subject>COVID</subject><subject>COVID-19</subject><subject>Deep learning</subject><subject>Enhancement</subject><subject>Flow-based Deformation</subject><subject>Image processing</subject><subject>Image quality</subject><subject>Image-to-Image Translation</subject><subject>Lung</subject><subject>Neurons</subject><subject>Pandemics</subject><issn>2381-8549</issn><isbn>1665441151</isbn><isbn>9781665441155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkEFLwzAYQKMguE1_gSD5A6n5viRt4s11qxYGFtlBvIy0TbdI10hblP57J-70Lo93eITcA48AuHnI07yQaFBHyBEio3isEnNB5hDHSkoABZdkhkID00qaazIfhk_OkYOAGfkorO-zNvw80nV3sF3luz0tQj_asnU0PbhhpO_szU50OdE_jy3t4Gq6ck3oj3b0oaNZ6Gkavn3NwNCVt_suDKfMDblqbDu42zMXZJutt-kL27w-5-nThnnkYmSoUScVQKmx5lJXlVNKJglXpTFJUyHEGqU9AVXFVaNKrbU0DSRSWG2EWJC7_6x3zu2-en-0_bQ7bxC_kMJPtA</recordid><startdate>20210919</startdate><enddate>20210919</enddate><creator>Le, Ngan</creator><creator>Sorensen, James</creator><creator>Bui, Toan Duc</creator><creator>Choudhary, Arabinda</creator><creator>Luu, Khoa</creator><creator>Nguyen, Hien</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210919</creationdate><title>PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing</title><author>Le, Ngan ; Sorensen, James ; Bui, Toan Duc ; Choudhary, Arabinda ; Luu, Khoa ; Nguyen, Hien</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-28287c11b82d048cce5547705b997fc216824a21625c05f5b88849f1743a8933</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chest Xray</topic><topic>COVID</topic><topic>COVID-19</topic><topic>Deep learning</topic><topic>Enhancement</topic><topic>Flow-based Deformation</topic><topic>Image processing</topic><topic>Image quality</topic><topic>Image-to-Image Translation</topic><topic>Lung</topic><topic>Neurons</topic><topic>Pandemics</topic><toplevel>online_resources</toplevel><creatorcontrib>Le, Ngan</creatorcontrib><creatorcontrib>Sorensen, James</creatorcontrib><creatorcontrib>Bui, Toan Duc</creatorcontrib><creatorcontrib>Choudhary, Arabinda</creatorcontrib><creatorcontrib>Luu, Khoa</creatorcontrib><creatorcontrib>Nguyen, Hien</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Le, Ngan</au><au>Sorensen, James</au><au>Bui, Toan Duc</au><au>Choudhary, Arabinda</au><au>Luu, Khoa</au><au>Nguyen, Hien</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing</atitle><btitle>2021 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2021-09-19</date><risdate>2021</risdate><spage>215</spage><epage>219</epage><pages>215-219</pages><eissn>2381-8549</eissn><eisbn>1665441151</eisbn><eisbn>9781665441155</eisbn><abstract>This work aims to assist physicians improve their speed and diagnostic accuracy when interpreting portable CXR (p_CXR), which are in especially high demand in the setting of the ongoing COVID-19 pandemic. In this paper, we introduce new deep learning frameworks, named Pair-Flow, to align and enhance the quality of p_CXR to be more consistent, and to more closely match higher quality conventional CXR (c_CXR). The contributions of this work are four folds. Firstly, a new database collection of subject-pair CXR is introduced and available to download. Secondly, a new deep learning-based alignment approach is presented to align subject-pairs dataset to obtain pixel-pairs dataset. Thirdly, a new Pair-Flow approach, an end-to-end invertible transfer deep learning method, to enhance the degraded quality of p_CXR. Finally, the performance of the proposed system is evaluated at both image quality and topological properties.</abstract><pub>IEEE</pub><doi>10.1109/ICIP42928.2021.9506579</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2381-8549 |
ispartof | 2021 IEEE International Conference on Image Processing (ICIP), 2021, p.215-219 |
issn | 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_9506579 |
source | IEEE Xplore All Conference Series |
subjects | Chest Xray COVID COVID-19 Deep learning Enhancement Flow-based Deformation Image processing Image quality Image-to-Image Translation Lung Neurons Pandemics |
title | PairFlow: Enhancing Portable Chest X-Ray By Flow-Based Deformation For Covid-19 Diagnosing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T10%3A27%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=PairFlow:%20Enhancing%20Portable%20Chest%20X-Ray%20By%20Flow-Based%20Deformation%20For%20Covid-19%20Diagnosing&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Le,%20Ngan&rft.date=2021-09-19&rft.spage=215&rft.epage=219&rft.pages=215-219&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP42928.2021.9506579&rft.eisbn=1665441151&rft.eisbn_list=9781665441155&rft_dat=%3Cieee_CHZPO%3E9506579%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-28287c11b82d048cce5547705b997fc216824a21625c05f5b88849f1743a8933%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9506579&rfr_iscdi=true |