Loading…
Computational Coherent Imaging For Accommodation-Invariant Near-Eye Displays
We present a computational accommodation-invariant near-eye display, which relies on imaging with coherent light and utilizes static optics together with convolutional neural network-based preprocessing. The network and the display optics are co-optimized to obtain a depth-invariant display point sp...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3437 |
container_issue | |
container_start_page | 3433 |
container_title | |
container_volume | |
creator | Makinen, Jani Sahin, Erdem Akpinar, Ugur Gotchev, Atanas |
description | We present a computational accommodation-invariant near-eye display, which relies on imaging with coherent light and utilizes static optics together with convolutional neural network-based preprocessing. The network and the display optics are co-optimized to obtain a depth-invariant display point spread function, and thus relieve the conflict between accommodation and ocular vergence cues that typically exists in conventional near-eye displays. We demonstrate through simulations that the computational near-eye display designed based on the proposed approach can deliver sharp images within a depth range of 3 diopters for an effective aperture (eyepiece) size of 10 mm. Thus, it provides a competitive alternative to the existing accommodation-invariant displays. |
doi_str_mv | 10.1109/ICIP42928.2021.9506773 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9506773</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9506773</ieee_id><sourcerecordid>9506773</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-2e12e83f2ef42e9ba14d8c0d18434ff879614adf05e169f6d0066f7975b9570b3</originalsourceid><addsrcrecordid>eNotj8tKw0AUQEdBsK1-gSD5gcR755WZZYltDQR1oesySe7UkbxIopC_V7SrszkcOIzdIySIYB_yLH-V3HKTcOCYWAU6TcUFW6PWSkpEhZdsxYXB2Chpr9l6mj4BOKDAFSuyvh2-ZjeHvnNNlPUfNFI3R3nrTqE7Rft-jLZV1bdtX_9Jcd59uzG4X-eZ3BjvFooewzQ0bplu2JV3zUS3Z27Y-373lj3Fxcshz7ZFHDiIOeaEnIzwnLzkZEuHsjYV1GikkN6b1GqUrvagCLX1ugbQ2qc2VaVVKZRiw-7-u4GIjsMYWjcux_O5-AF0kk38</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Computational Coherent Imaging For Accommodation-Invariant Near-Eye Displays</title><source>IEEE Xplore All Conference Series</source><creator>Makinen, Jani ; Sahin, Erdem ; Akpinar, Ugur ; Gotchev, Atanas</creator><creatorcontrib>Makinen, Jani ; Sahin, Erdem ; Akpinar, Ugur ; Gotchev, Atanas</creatorcontrib><description>We present a computational accommodation-invariant near-eye display, which relies on imaging with coherent light and utilizes static optics together with convolutional neural network-based preprocessing. The network and the display optics are co-optimized to obtain a depth-invariant display point spread function, and thus relieve the conflict between accommodation and ocular vergence cues that typically exists in conventional near-eye displays. We demonstrate through simulations that the computational near-eye display designed based on the proposed approach can deliver sharp images within a depth range of 3 diopters for an effective aperture (eyepiece) size of 10 mm. Thus, it provides a competitive alternative to the existing accommodation-invariant displays.</description><identifier>EISSN: 2381-8549</identifier><identifier>EISBN: 1665441151</identifier><identifier>EISBN: 9781665441155</identifier><identifier>DOI: 10.1109/ICIP42928.2021.9506773</identifier><language>eng</language><publisher>IEEE</publisher><subject>Coherence ; Coherent imaging ; Computational near-eye displays ; Integrated optics ; Lighting ; Neural networks ; Optical design ; Optical losses ; Optics ; Speckle ; Training</subject><ispartof>2021 IEEE International Conference on Image Processing (ICIP), 2021, p.3433-3437</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9506773$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23910,23911,25119,27904,54533,54910</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9506773$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Makinen, Jani</creatorcontrib><creatorcontrib>Sahin, Erdem</creatorcontrib><creatorcontrib>Akpinar, Ugur</creatorcontrib><creatorcontrib>Gotchev, Atanas</creatorcontrib><title>Computational Coherent Imaging For Accommodation-Invariant Near-Eye Displays</title><title>2021 IEEE International Conference on Image Processing (ICIP)</title><addtitle>ICIP</addtitle><description>We present a computational accommodation-invariant near-eye display, which relies on imaging with coherent light and utilizes static optics together with convolutional neural network-based preprocessing. The network and the display optics are co-optimized to obtain a depth-invariant display point spread function, and thus relieve the conflict between accommodation and ocular vergence cues that typically exists in conventional near-eye displays. We demonstrate through simulations that the computational near-eye display designed based on the proposed approach can deliver sharp images within a depth range of 3 diopters for an effective aperture (eyepiece) size of 10 mm. Thus, it provides a competitive alternative to the existing accommodation-invariant displays.</description><subject>Coherence</subject><subject>Coherent imaging</subject><subject>Computational near-eye displays</subject><subject>Integrated optics</subject><subject>Lighting</subject><subject>Neural networks</subject><subject>Optical design</subject><subject>Optical losses</subject><subject>Optics</subject><subject>Speckle</subject><subject>Training</subject><issn>2381-8549</issn><isbn>1665441151</isbn><isbn>9781665441155</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj8tKw0AUQEdBsK1-gSD5gcR755WZZYltDQR1oesySe7UkbxIopC_V7SrszkcOIzdIySIYB_yLH-V3HKTcOCYWAU6TcUFW6PWSkpEhZdsxYXB2Chpr9l6mj4BOKDAFSuyvh2-ZjeHvnNNlPUfNFI3R3nrTqE7Rft-jLZV1bdtX_9Jcd59uzG4X-eZ3BjvFooewzQ0bplu2JV3zUS3Z27Y-373lj3Fxcshz7ZFHDiIOeaEnIzwnLzkZEuHsjYV1GikkN6b1GqUrvagCLX1ugbQ2qc2VaVVKZRiw-7-u4GIjsMYWjcux_O5-AF0kk38</recordid><startdate>20210919</startdate><enddate>20210919</enddate><creator>Makinen, Jani</creator><creator>Sahin, Erdem</creator><creator>Akpinar, Ugur</creator><creator>Gotchev, Atanas</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210919</creationdate><title>Computational Coherent Imaging For Accommodation-Invariant Near-Eye Displays</title><author>Makinen, Jani ; Sahin, Erdem ; Akpinar, Ugur ; Gotchev, Atanas</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-2e12e83f2ef42e9ba14d8c0d18434ff879614adf05e169f6d0066f7975b9570b3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Coherence</topic><topic>Coherent imaging</topic><topic>Computational near-eye displays</topic><topic>Integrated optics</topic><topic>Lighting</topic><topic>Neural networks</topic><topic>Optical design</topic><topic>Optical losses</topic><topic>Optics</topic><topic>Speckle</topic><topic>Training</topic><toplevel>online_resources</toplevel><creatorcontrib>Makinen, Jani</creatorcontrib><creatorcontrib>Sahin, Erdem</creatorcontrib><creatorcontrib>Akpinar, Ugur</creatorcontrib><creatorcontrib>Gotchev, Atanas</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Makinen, Jani</au><au>Sahin, Erdem</au><au>Akpinar, Ugur</au><au>Gotchev, Atanas</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Computational Coherent Imaging For Accommodation-Invariant Near-Eye Displays</atitle><btitle>2021 IEEE International Conference on Image Processing (ICIP)</btitle><stitle>ICIP</stitle><date>2021-09-19</date><risdate>2021</risdate><spage>3433</spage><epage>3437</epage><pages>3433-3437</pages><eissn>2381-8549</eissn><eisbn>1665441151</eisbn><eisbn>9781665441155</eisbn><abstract>We present a computational accommodation-invariant near-eye display, which relies on imaging with coherent light and utilizes static optics together with convolutional neural network-based preprocessing. The network and the display optics are co-optimized to obtain a depth-invariant display point spread function, and thus relieve the conflict between accommodation and ocular vergence cues that typically exists in conventional near-eye displays. We demonstrate through simulations that the computational near-eye display designed based on the proposed approach can deliver sharp images within a depth range of 3 diopters for an effective aperture (eyepiece) size of 10 mm. Thus, it provides a competitive alternative to the existing accommodation-invariant displays.</abstract><pub>IEEE</pub><doi>10.1109/ICIP42928.2021.9506773</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2381-8549 |
ispartof | 2021 IEEE International Conference on Image Processing (ICIP), 2021, p.3433-3437 |
issn | 2381-8549 |
language | eng |
recordid | cdi_ieee_primary_9506773 |
source | IEEE Xplore All Conference Series |
subjects | Coherence Coherent imaging Computational near-eye displays Integrated optics Lighting Neural networks Optical design Optical losses Optics Speckle Training |
title | Computational Coherent Imaging For Accommodation-Invariant Near-Eye Displays |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T06%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Computational%20Coherent%20Imaging%20For%20Accommodation-Invariant%20Near-Eye%20Displays&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Image%20Processing%20(ICIP)&rft.au=Makinen,%20Jani&rft.date=2021-09-19&rft.spage=3433&rft.epage=3437&rft.pages=3433-3437&rft.eissn=2381-8549&rft_id=info:doi/10.1109/ICIP42928.2021.9506773&rft.eisbn=1665441151&rft.eisbn_list=9781665441155&rft_dat=%3Cieee_CHZPO%3E9506773%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-2e12e83f2ef42e9ba14d8c0d18434ff879614adf05e169f6d0066f7975b9570b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9506773&rfr_iscdi=true |