Loading…
A 5-V Dynamic Class-C Paralleled Single-Stage Amplifier With Near-Zero Dead-Zone Control and Current-Redistributive Rail-to-Rail Gm-Boosting Technique
For fast buffering of large stepwise input to an nF-range capacitive load, this article presents a 5-V rail-to-rail (RTR) input-output paralleled-amplifier (PA) in which a dynamic class-C amplifier (DCCA) and a linear single-stage operational transconductance amplifier (OTA) are combined in parallel...
Saved in:
Published in: | IEEE journal of solid-state circuits 2021-12, Vol.56 (12), p.3593-3607 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 3607 |
container_issue | 12 |
container_start_page | 3593 |
container_title | IEEE journal of solid-state circuits |
container_volume | 56 |
creator | Koh, Seok-Tae Lee, Ji-Hun Kang, Gyeong-Gu Han, Hyunki Kim, Hyun-Sik |
description | For fast buffering of large stepwise input to an nF-range capacitive load, this article presents a 5-V rail-to-rail (RTR) input-output paralleled-amplifier (PA) in which a dynamic class-C amplifier (DCCA) and a linear single-stage operational transconductance amplifier (OTA) are combined in parallel. During slew time, the DCCA, which is designed to consume a near-zero static current, dominantly supplies the dynamic current up to 8.5 mA to the output. When the output gets closer to the fine-settling region, the DCCA is rapidly faded out in virtue of a dedicated near-zero dead-zone control (NDZC), and it hands over to the linear OTA. A current-redistributive RTR G_{\text {m}} -boosting technique is also proposed so that the OTA can have a wide gain-bandwidth product (GBW) even over the RTR input range while minimizing the quiescent current dissipation. The prototype chip was fabricated only with 0.5- \mu \text{m} 5-V CMOS devices, and it occupies a die area of 0.03 \mu \text{m}^{2} . The proposed amplifier consumed a static current of 3.1 \mu \text{A} with a supply voltage of 5 V. The slew rates (SRs) with load capacitances ( C_{\mathrm {L}} ) of 0.8 and 10 nF were measured to be 10.3 and 0.86 V/ \mu \text{s} , respectively, for a step input of \Delta 4.2 V, which is a state-of-the-art result compared to prior chips. The measured GBW of 10-127 kHz was achieved over 0.8-10 nF C_{\mathrm {L}} with ≥ 59° phase margin (PM). The measured GBW deviation in a common-mode voltage ( V_{\mathrm {CM}} ) range of 0.3-4.7 V was within the maximum of 20%. |
doi_str_mv | 10.1109/JSSC.2021.3101895 |
format | article |
fullrecord | <record><control><sourceid>ieee</sourceid><recordid>TN_cdi_ieee_primary_9508770</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9508770</ieee_id><sourcerecordid>9508770</sourcerecordid><originalsourceid>FETCH-LOGICAL-i90t-336e00b75a4b5a14c464802d836783f8c001edbf1c237152a780d8c306ae15733</originalsourceid><addsrcrecordid>eNotj0FOwzAURC0EEqVwAMTmX8DFjuPYWZYUCqgC1FSAuqmc5Kc1cpPiuEi9COclCFZPM4s3GkIuORtxztLrxzzPRhGL-EhwxnUqj8iAS6kpV-L9mAxYX9I0YuyUnHXdRx_jWPMB-R6DpK8wOTRma0vInOk6msGL8cY5dFhBbpu1Q5oHs0YYb3fO1hY9vNmwgSc0ni7RtzBBU9Fl2yBkbRN868A0FWR777EJdI6V7YK3xT7YL4S5sY6Glv4Splt607Zd6GdggeWmsZ97PCcntXEdXvxzSBZ3t4vsns6epw_ZeEZtygIVIkHGCiVNXEjD4zJOYs2iSotEaVHrsr-JVVHzMhKKy8gozSpdCpYY5FIJMSRXf1qLiKudt1vjD6tUMq0UEz99jGUW</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>A 5-V Dynamic Class-C Paralleled Single-Stage Amplifier With Near-Zero Dead-Zone Control and Current-Redistributive Rail-to-Rail Gm-Boosting Technique</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Koh, Seok-Tae ; Lee, Ji-Hun ; Kang, Gyeong-Gu ; Han, Hyunki ; Kim, Hyun-Sik</creator><creatorcontrib>Koh, Seok-Tae ; Lee, Ji-Hun ; Kang, Gyeong-Gu ; Han, Hyunki ; Kim, Hyun-Sik</creatorcontrib><description><![CDATA[For fast buffering of large stepwise input to an nF-range capacitive load, this article presents a 5-V rail-to-rail (RTR) input-output paralleled-amplifier (PA) in which a dynamic class-C amplifier (DCCA) and a linear single-stage operational transconductance amplifier (OTA) are combined in parallel. During slew time, the DCCA, which is designed to consume a near-zero static current, dominantly supplies the dynamic current up to 8.5 mA to the output. When the output gets closer to the fine-settling region, the DCCA is rapidly faded out in virtue of a dedicated near-zero dead-zone control (NDZC), and it hands over to the linear OTA. A current-redistributive RTR <inline-formula> <tex-math notation="LaTeX">G_{\text {m}} </tex-math></inline-formula>-boosting technique is also proposed so that the OTA can have a wide gain-bandwidth product (GBW) even over the RTR input range while minimizing the quiescent current dissipation. The prototype chip was fabricated only with 0.5-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> 5-V CMOS devices, and it occupies a die area of 0.03 <inline-formula> <tex-math notation="LaTeX">\mu \text{m}^{2} </tex-math></inline-formula>. The proposed amplifier consumed a static current of 3.1 <inline-formula> <tex-math notation="LaTeX">\mu \text{A} </tex-math></inline-formula> with a supply voltage of 5 V. The slew rates (SRs) with load capacitances (<inline-formula> <tex-math notation="LaTeX">C_{\mathrm {L}} </tex-math></inline-formula>) of 0.8 and 10 nF were measured to be 10.3 and 0.86 V/<inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>, respectively, for a step input of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>4.2 V, which is a state-of-the-art result compared to prior chips. The measured GBW of 10-127 kHz was achieved over 0.8-10 nF <inline-formula> <tex-math notation="LaTeX">C_{\mathrm {L}} </tex-math></inline-formula> with ≥ 59° phase margin (PM). The measured GBW deviation in a common-mode voltage (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm {CM}} </tex-math></inline-formula>) range of 0.3-4.7 V was within the maximum of 20%.]]></description><identifier>ISSN: 0018-9200</identifier><identifier>EISSN: 1558-173X</identifier><identifier>DOI: 10.1109/JSSC.2021.3101895</identifier><identifier>CODEN: IJSCBC</identifier><language>eng</language><publisher>IEEE</publisher><subject>Amplifiers ; Boosting ; Dynamic class-C amplifier (DCCA) ; Logic gates ; operational transconductance amplifier (OTA) ; output buffer ; paralleled amplifier (PA) ; rail-to-rail (RTR) ; Semiconductor device measurement ; slew rate (SR) ; Transconductance ; transconductance (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G m)-boosting ; Transient analysis ; Voltage measurement</subject><ispartof>IEEE journal of solid-state circuits, 2021-12, Vol.56 (12), p.3593-3607</ispartof><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0002-4564-7938 ; 0000-0001-8331-1223 ; 0000-0002-8377-257X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9508770$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Koh, Seok-Tae</creatorcontrib><creatorcontrib>Lee, Ji-Hun</creatorcontrib><creatorcontrib>Kang, Gyeong-Gu</creatorcontrib><creatorcontrib>Han, Hyunki</creatorcontrib><creatorcontrib>Kim, Hyun-Sik</creatorcontrib><title>A 5-V Dynamic Class-C Paralleled Single-Stage Amplifier With Near-Zero Dead-Zone Control and Current-Redistributive Rail-to-Rail Gm-Boosting Technique</title><title>IEEE journal of solid-state circuits</title><addtitle>JSSC</addtitle><description><![CDATA[For fast buffering of large stepwise input to an nF-range capacitive load, this article presents a 5-V rail-to-rail (RTR) input-output paralleled-amplifier (PA) in which a dynamic class-C amplifier (DCCA) and a linear single-stage operational transconductance amplifier (OTA) are combined in parallel. During slew time, the DCCA, which is designed to consume a near-zero static current, dominantly supplies the dynamic current up to 8.5 mA to the output. When the output gets closer to the fine-settling region, the DCCA is rapidly faded out in virtue of a dedicated near-zero dead-zone control (NDZC), and it hands over to the linear OTA. A current-redistributive RTR <inline-formula> <tex-math notation="LaTeX">G_{\text {m}} </tex-math></inline-formula>-boosting technique is also proposed so that the OTA can have a wide gain-bandwidth product (GBW) even over the RTR input range while minimizing the quiescent current dissipation. The prototype chip was fabricated only with 0.5-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> 5-V CMOS devices, and it occupies a die area of 0.03 <inline-formula> <tex-math notation="LaTeX">\mu \text{m}^{2} </tex-math></inline-formula>. The proposed amplifier consumed a static current of 3.1 <inline-formula> <tex-math notation="LaTeX">\mu \text{A} </tex-math></inline-formula> with a supply voltage of 5 V. The slew rates (SRs) with load capacitances (<inline-formula> <tex-math notation="LaTeX">C_{\mathrm {L}} </tex-math></inline-formula>) of 0.8 and 10 nF were measured to be 10.3 and 0.86 V/<inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>, respectively, for a step input of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>4.2 V, which is a state-of-the-art result compared to prior chips. The measured GBW of 10-127 kHz was achieved over 0.8-10 nF <inline-formula> <tex-math notation="LaTeX">C_{\mathrm {L}} </tex-math></inline-formula> with ≥ 59° phase margin (PM). The measured GBW deviation in a common-mode voltage (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm {CM}} </tex-math></inline-formula>) range of 0.3-4.7 V was within the maximum of 20%.]]></description><subject>Amplifiers</subject><subject>Boosting</subject><subject>Dynamic class-C amplifier (DCCA)</subject><subject>Logic gates</subject><subject>operational transconductance amplifier (OTA)</subject><subject>output buffer</subject><subject>paralleled amplifier (PA)</subject><subject>rail-to-rail (RTR)</subject><subject>Semiconductor device measurement</subject><subject>slew rate (SR)</subject><subject>Transconductance</subject><subject>transconductance (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G m)-boosting</subject><subject>Transient analysis</subject><subject>Voltage measurement</subject><issn>0018-9200</issn><issn>1558-173X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNotj0FOwzAURC0EEqVwAMTmX8DFjuPYWZYUCqgC1FSAuqmc5Kc1cpPiuEi9COclCFZPM4s3GkIuORtxztLrxzzPRhGL-EhwxnUqj8iAS6kpV-L9mAxYX9I0YuyUnHXdRx_jWPMB-R6DpK8wOTRma0vInOk6msGL8cY5dFhBbpu1Q5oHs0YYb3fO1hY9vNmwgSc0ni7RtzBBU9Fl2yBkbRN868A0FWR777EJdI6V7YK3xT7YL4S5sY6Glv4Splt607Zd6GdggeWmsZ97PCcntXEdXvxzSBZ3t4vsns6epw_ZeEZtygIVIkHGCiVNXEjD4zJOYs2iSotEaVHrsr-JVVHzMhKKy8gozSpdCpYY5FIJMSRXf1qLiKudt1vjD6tUMq0UEz99jGUW</recordid><startdate>202112</startdate><enddate>202112</enddate><creator>Koh, Seok-Tae</creator><creator>Lee, Ji-Hun</creator><creator>Kang, Gyeong-Gu</creator><creator>Han, Hyunki</creator><creator>Kim, Hyun-Sik</creator><general>IEEE</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><orcidid>https://orcid.org/0000-0002-4564-7938</orcidid><orcidid>https://orcid.org/0000-0001-8331-1223</orcidid><orcidid>https://orcid.org/0000-0002-8377-257X</orcidid></search><sort><creationdate>202112</creationdate><title>A 5-V Dynamic Class-C Paralleled Single-Stage Amplifier With Near-Zero Dead-Zone Control and Current-Redistributive Rail-to-Rail Gm-Boosting Technique</title><author>Koh, Seok-Tae ; Lee, Ji-Hun ; Kang, Gyeong-Gu ; Han, Hyunki ; Kim, Hyun-Sik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i90t-336e00b75a4b5a14c464802d836783f8c001edbf1c237152a780d8c306ae15733</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Amplifiers</topic><topic>Boosting</topic><topic>Dynamic class-C amplifier (DCCA)</topic><topic>Logic gates</topic><topic>operational transconductance amplifier (OTA)</topic><topic>output buffer</topic><topic>paralleled amplifier (PA)</topic><topic>rail-to-rail (RTR)</topic><topic>Semiconductor device measurement</topic><topic>slew rate (SR)</topic><topic>Transconductance</topic><topic>transconductance (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G m)-boosting</topic><topic>Transient analysis</topic><topic>Voltage measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Koh, Seok-Tae</creatorcontrib><creatorcontrib>Lee, Ji-Hun</creatorcontrib><creatorcontrib>Kang, Gyeong-Gu</creatorcontrib><creatorcontrib>Han, Hyunki</creatorcontrib><creatorcontrib>Kim, Hyun-Sik</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><jtitle>IEEE journal of solid-state circuits</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Koh, Seok-Tae</au><au>Lee, Ji-Hun</au><au>Kang, Gyeong-Gu</au><au>Han, Hyunki</au><au>Kim, Hyun-Sik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A 5-V Dynamic Class-C Paralleled Single-Stage Amplifier With Near-Zero Dead-Zone Control and Current-Redistributive Rail-to-Rail Gm-Boosting Technique</atitle><jtitle>IEEE journal of solid-state circuits</jtitle><stitle>JSSC</stitle><date>2021-12</date><risdate>2021</risdate><volume>56</volume><issue>12</issue><spage>3593</spage><epage>3607</epage><pages>3593-3607</pages><issn>0018-9200</issn><eissn>1558-173X</eissn><coden>IJSCBC</coden><abstract><![CDATA[For fast buffering of large stepwise input to an nF-range capacitive load, this article presents a 5-V rail-to-rail (RTR) input-output paralleled-amplifier (PA) in which a dynamic class-C amplifier (DCCA) and a linear single-stage operational transconductance amplifier (OTA) are combined in parallel. During slew time, the DCCA, which is designed to consume a near-zero static current, dominantly supplies the dynamic current up to 8.5 mA to the output. When the output gets closer to the fine-settling region, the DCCA is rapidly faded out in virtue of a dedicated near-zero dead-zone control (NDZC), and it hands over to the linear OTA. A current-redistributive RTR <inline-formula> <tex-math notation="LaTeX">G_{\text {m}} </tex-math></inline-formula>-boosting technique is also proposed so that the OTA can have a wide gain-bandwidth product (GBW) even over the RTR input range while minimizing the quiescent current dissipation. The prototype chip was fabricated only with 0.5-<inline-formula> <tex-math notation="LaTeX">\mu \text{m} </tex-math></inline-formula> 5-V CMOS devices, and it occupies a die area of 0.03 <inline-formula> <tex-math notation="LaTeX">\mu \text{m}^{2} </tex-math></inline-formula>. The proposed amplifier consumed a static current of 3.1 <inline-formula> <tex-math notation="LaTeX">\mu \text{A} </tex-math></inline-formula> with a supply voltage of 5 V. The slew rates (SRs) with load capacitances (<inline-formula> <tex-math notation="LaTeX">C_{\mathrm {L}} </tex-math></inline-formula>) of 0.8 and 10 nF were measured to be 10.3 and 0.86 V/<inline-formula> <tex-math notation="LaTeX">\mu \text{s} </tex-math></inline-formula>, respectively, for a step input of <inline-formula> <tex-math notation="LaTeX">\Delta </tex-math></inline-formula>4.2 V, which is a state-of-the-art result compared to prior chips. The measured GBW of 10-127 kHz was achieved over 0.8-10 nF <inline-formula> <tex-math notation="LaTeX">C_{\mathrm {L}} </tex-math></inline-formula> with ≥ 59° phase margin (PM). The measured GBW deviation in a common-mode voltage (<inline-formula> <tex-math notation="LaTeX">V_{\mathrm {CM}} </tex-math></inline-formula>) range of 0.3-4.7 V was within the maximum of 20%.]]></abstract><pub>IEEE</pub><doi>10.1109/JSSC.2021.3101895</doi><tpages>15</tpages><orcidid>https://orcid.org/0000-0002-4564-7938</orcidid><orcidid>https://orcid.org/0000-0001-8331-1223</orcidid><orcidid>https://orcid.org/0000-0002-8377-257X</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9200 |
ispartof | IEEE journal of solid-state circuits, 2021-12, Vol.56 (12), p.3593-3607 |
issn | 0018-9200 1558-173X |
language | eng |
recordid | cdi_ieee_primary_9508770 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Amplifiers Boosting Dynamic class-C amplifier (DCCA) Logic gates operational transconductance amplifier (OTA) output buffer paralleled amplifier (PA) rail-to-rail (RTR) Semiconductor device measurement slew rate (SR) Transconductance transconductance (<italic xmlns:ali="http://www.niso.org/schemas/ali/1.0/" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">G m)-boosting Transient analysis Voltage measurement |
title | A 5-V Dynamic Class-C Paralleled Single-Stage Amplifier With Near-Zero Dead-Zone Control and Current-Redistributive Rail-to-Rail Gm-Boosting Technique |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T16%3A55%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%205-V%20Dynamic%20Class-C%20Paralleled%20Single-Stage%20Amplifier%20With%20Near-Zero%20Dead-Zone%20Control%20and%20Current-Redistributive%20Rail-to-Rail%20Gm-Boosting%20Technique&rft.jtitle=IEEE%20journal%20of%20solid-state%20circuits&rft.au=Koh,%20Seok-Tae&rft.date=2021-12&rft.volume=56&rft.issue=12&rft.spage=3593&rft.epage=3607&rft.pages=3593-3607&rft.issn=0018-9200&rft.eissn=1558-173X&rft.coden=IJSCBC&rft_id=info:doi/10.1109/JSSC.2021.3101895&rft_dat=%3Cieee%3E9508770%3C/ieee%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i90t-336e00b75a4b5a14c464802d836783f8c001edbf1c237152a780d8c306ae15733%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9508770&rfr_iscdi=true |