Loading…

Genetic Algorithm Assisted Parametric Design of Splitting Inductance in High Frequency GaN-Based Dual Active Bridge Converter

Splitting and placing interfacing inductance on both sides of the transformer has been proven to be an effective method, which extends the zero-voltage switching region for all the switching devices in the dual active bridge (DAB) converter. With the trend toward operating in higher frequency, achie...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on industrial electronics (1982) 2023-01, Vol.70 (1), p.522-531
Main Authors: Wang, Chang, Zsurzsan, Tiberiu-Gabriel, Zhang, Zhe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c333t-57fc3f95cbfbcf933e3caf3eea541655b900c69838a559cd61e9a8b91e330adf3
cites cdi_FETCH-LOGICAL-c333t-57fc3f95cbfbcf933e3caf3eea541655b900c69838a559cd61e9a8b91e330adf3
container_end_page 531
container_issue 1
container_start_page 522
container_title IEEE transactions on industrial electronics (1982)
container_volume 70
creator Wang, Chang
Zsurzsan, Tiberiu-Gabriel
Zhang, Zhe
description Splitting and placing interfacing inductance on both sides of the transformer has been proven to be an effective method, which extends the zero-voltage switching region for all the switching devices in the dual active bridge (DAB) converter. With the trend toward operating in higher frequency, achieving higher power density and higher efficiency, the converter model becomes more complex due to the non-negligible parasitic components that brings new challenges to DAB converter design. Traditional analytical methods have made it hard to imitate the proposed converter easily and precisely. Thus, artificial intelligence techniques are able to be utilized to assist the design process. When considering the converter system as a gray-box model, the metaheuristic algorithm can be implemented for the targeted design inside such a gray-box. In this article, a genetic algorithm (GA) is employed in the DAB converter parametric design with an explicit fitness desire to help in discovering the high frequency oscillation (HFO) problem. Consequently, the splitting inductance tuning method is proposed for eliminating the HFO problem and minimizing inductors' loss. The methodology of implementing GA into converter parametric design, and the proposed splitting inductance tuning method are introduced and verified with a 1 MHz gallium nitride high-electron-mobility transistor based DAB converter prototype. The comparitive experimental results prove the effectiveness of the splitting inductance tuning method and achieve 4% efficiency enhancement with 200 W power delivering.
doi_str_mv 10.1109/TIE.2021.3102398
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9511309</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9511309</ieee_id><sourcerecordid>2706892120</sourcerecordid><originalsourceid>FETCH-LOGICAL-c333t-57fc3f95cbfbcf933e3caf3eea541655b900c69838a559cd61e9a8b91e330adf3</originalsourceid><addsrcrecordid>eNo9kE1PAjEQhhujiYjeTbw08bw43dJle-QbEqIm4nlTutOlBLrYFhIO_neXQDzNYZ73nclDyDODDmMg35bzcSeFlHU4g5TL_Ia0mBC9RMpufktakPbyBKCb3ZOHEDYArCuYaJHfKTqMVtP-tqq9jesd7YdgQ8SSfiqvdhh9sx1hsJWjtaFf-62N0bqKzl150FE5jdQ6OrPVmk48_hzQ6ROdqvdkoELTMjqoLe3raI9IB96WFdJh7Y7oI_pHcmfUNuDTdbbJ92S8HM6Sxcd0PuwvEs05j4noGc2NFHplVtpIzpFrZTiiEl2WCbGSADqTOc-VEFKXGUOp8pVkyDmo0vA2eb307n3dPBhisakP3jUni7QHWS5TlkJDwYXSvg7Boyn23u6UPxUMirPkopFcnCUXV8lN5OUSsYj4j0vBGAfJ_wA5a3lG</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2706892120</pqid></control><display><type>article</type><title>Genetic Algorithm Assisted Parametric Design of Splitting Inductance in High Frequency GaN-Based Dual Active Bridge Converter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Wang, Chang ; Zsurzsan, Tiberiu-Gabriel ; Zhang, Zhe</creator><creatorcontrib>Wang, Chang ; Zsurzsan, Tiberiu-Gabriel ; Zhang, Zhe</creatorcontrib><description>Splitting and placing interfacing inductance on both sides of the transformer has been proven to be an effective method, which extends the zero-voltage switching region for all the switching devices in the dual active bridge (DAB) converter. With the trend toward operating in higher frequency, achieving higher power density and higher efficiency, the converter model becomes more complex due to the non-negligible parasitic components that brings new challenges to DAB converter design. Traditional analytical methods have made it hard to imitate the proposed converter easily and precisely. Thus, artificial intelligence techniques are able to be utilized to assist the design process. When considering the converter system as a gray-box model, the metaheuristic algorithm can be implemented for the targeted design inside such a gray-box. In this article, a genetic algorithm (GA) is employed in the DAB converter parametric design with an explicit fitness desire to help in discovering the high frequency oscillation (HFO) problem. Consequently, the splitting inductance tuning method is proposed for eliminating the HFO problem and minimizing inductors' loss. The methodology of implementing GA into converter parametric design, and the proposed splitting inductance tuning method are introduced and verified with a 1 MHz gallium nitride high-electron-mobility transistor based DAB converter prototype. The comparitive experimental results prove the effectiveness of the splitting inductance tuning method and achieve 4% efficiency enhancement with 200 W power delivering.</description><identifier>ISSN: 0278-0046</identifier><identifier>EISSN: 1557-9948</identifier><identifier>DOI: 10.1109/TIE.2021.3102398</identifier><identifier>CODEN: ITIED6</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Artificial intelligence ; Artificial intelligence (AI) ; dual active bridge ; Electric bridges ; Electric converters ; Gallium nitrides ; genetic algorithm ; Genetic algorithms ; gray-box model ; Heuristic methods ; High electron mobility transistors ; High frequencies ; Inductance ; Inductors ; Optimization ; Parametric statistics ; Semiconductor devices ; Splitting ; splitting inductance tuning method ; Switches ; Switching ; Tuning ; Zero voltage switching ; zero-voltage switching (ZVS)</subject><ispartof>IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.522-531</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c333t-57fc3f95cbfbcf933e3caf3eea541655b900c69838a559cd61e9a8b91e330adf3</citedby><cites>FETCH-LOGICAL-c333t-57fc3f95cbfbcf933e3caf3eea541655b900c69838a559cd61e9a8b91e330adf3</cites><orcidid>0000-0003-4271-870X ; 0000-0001-7487-1317 ; 0000-0001-8407-3167</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9511309$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27923,27924,54795</link.rule.ids></links><search><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Zsurzsan, Tiberiu-Gabriel</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><title>Genetic Algorithm Assisted Parametric Design of Splitting Inductance in High Frequency GaN-Based Dual Active Bridge Converter</title><title>IEEE transactions on industrial electronics (1982)</title><addtitle>TIE</addtitle><description>Splitting and placing interfacing inductance on both sides of the transformer has been proven to be an effective method, which extends the zero-voltage switching region for all the switching devices in the dual active bridge (DAB) converter. With the trend toward operating in higher frequency, achieving higher power density and higher efficiency, the converter model becomes more complex due to the non-negligible parasitic components that brings new challenges to DAB converter design. Traditional analytical methods have made it hard to imitate the proposed converter easily and precisely. Thus, artificial intelligence techniques are able to be utilized to assist the design process. When considering the converter system as a gray-box model, the metaheuristic algorithm can be implemented for the targeted design inside such a gray-box. In this article, a genetic algorithm (GA) is employed in the DAB converter parametric design with an explicit fitness desire to help in discovering the high frequency oscillation (HFO) problem. Consequently, the splitting inductance tuning method is proposed for eliminating the HFO problem and minimizing inductors' loss. The methodology of implementing GA into converter parametric design, and the proposed splitting inductance tuning method are introduced and verified with a 1 MHz gallium nitride high-electron-mobility transistor based DAB converter prototype. The comparitive experimental results prove the effectiveness of the splitting inductance tuning method and achieve 4% efficiency enhancement with 200 W power delivering.</description><subject>Artificial intelligence</subject><subject>Artificial intelligence (AI)</subject><subject>dual active bridge</subject><subject>Electric bridges</subject><subject>Electric converters</subject><subject>Gallium nitrides</subject><subject>genetic algorithm</subject><subject>Genetic algorithms</subject><subject>gray-box model</subject><subject>Heuristic methods</subject><subject>High electron mobility transistors</subject><subject>High frequencies</subject><subject>Inductance</subject><subject>Inductors</subject><subject>Optimization</subject><subject>Parametric statistics</subject><subject>Semiconductor devices</subject><subject>Splitting</subject><subject>splitting inductance tuning method</subject><subject>Switches</subject><subject>Switching</subject><subject>Tuning</subject><subject>Zero voltage switching</subject><subject>zero-voltage switching (ZVS)</subject><issn>0278-0046</issn><issn>1557-9948</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><recordid>eNo9kE1PAjEQhhujiYjeTbw08bw43dJle-QbEqIm4nlTutOlBLrYFhIO_neXQDzNYZ73nclDyDODDmMg35bzcSeFlHU4g5TL_Ia0mBC9RMpufktakPbyBKCb3ZOHEDYArCuYaJHfKTqMVtP-tqq9jesd7YdgQ8SSfiqvdhh9sx1hsJWjtaFf-62N0bqKzl150FE5jdQ6OrPVmk48_hzQ6ROdqvdkoELTMjqoLe3raI9IB96WFdJh7Y7oI_pHcmfUNuDTdbbJ92S8HM6Sxcd0PuwvEs05j4noGc2NFHplVtpIzpFrZTiiEl2WCbGSADqTOc-VEFKXGUOp8pVkyDmo0vA2eb307n3dPBhisakP3jUni7QHWS5TlkJDwYXSvg7Boyn23u6UPxUMirPkopFcnCUXV8lN5OUSsYj4j0vBGAfJ_wA5a3lG</recordid><startdate>202301</startdate><enddate>202301</enddate><creator>Wang, Chang</creator><creator>Zsurzsan, Tiberiu-Gabriel</creator><creator>Zhang, Zhe</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-4271-870X</orcidid><orcidid>https://orcid.org/0000-0001-7487-1317</orcidid><orcidid>https://orcid.org/0000-0001-8407-3167</orcidid></search><sort><creationdate>202301</creationdate><title>Genetic Algorithm Assisted Parametric Design of Splitting Inductance in High Frequency GaN-Based Dual Active Bridge Converter</title><author>Wang, Chang ; Zsurzsan, Tiberiu-Gabriel ; Zhang, Zhe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c333t-57fc3f95cbfbcf933e3caf3eea541655b900c69838a559cd61e9a8b91e330adf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Artificial intelligence</topic><topic>Artificial intelligence (AI)</topic><topic>dual active bridge</topic><topic>Electric bridges</topic><topic>Electric converters</topic><topic>Gallium nitrides</topic><topic>genetic algorithm</topic><topic>Genetic algorithms</topic><topic>gray-box model</topic><topic>Heuristic methods</topic><topic>High electron mobility transistors</topic><topic>High frequencies</topic><topic>Inductance</topic><topic>Inductors</topic><topic>Optimization</topic><topic>Parametric statistics</topic><topic>Semiconductor devices</topic><topic>Splitting</topic><topic>splitting inductance tuning method</topic><topic>Switches</topic><topic>Switching</topic><topic>Tuning</topic><topic>Zero voltage switching</topic><topic>zero-voltage switching (ZVS)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Chang</creatorcontrib><creatorcontrib>Zsurzsan, Tiberiu-Gabriel</creatorcontrib><creatorcontrib>Zhang, Zhe</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL) - Journals and E-Books</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on industrial electronics (1982)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Chang</au><au>Zsurzsan, Tiberiu-Gabriel</au><au>Zhang, Zhe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Algorithm Assisted Parametric Design of Splitting Inductance in High Frequency GaN-Based Dual Active Bridge Converter</atitle><jtitle>IEEE transactions on industrial electronics (1982)</jtitle><stitle>TIE</stitle><date>2023-01</date><risdate>2023</risdate><volume>70</volume><issue>1</issue><spage>522</spage><epage>531</epage><pages>522-531</pages><issn>0278-0046</issn><eissn>1557-9948</eissn><coden>ITIED6</coden><abstract>Splitting and placing interfacing inductance on both sides of the transformer has been proven to be an effective method, which extends the zero-voltage switching region for all the switching devices in the dual active bridge (DAB) converter. With the trend toward operating in higher frequency, achieving higher power density and higher efficiency, the converter model becomes more complex due to the non-negligible parasitic components that brings new challenges to DAB converter design. Traditional analytical methods have made it hard to imitate the proposed converter easily and precisely. Thus, artificial intelligence techniques are able to be utilized to assist the design process. When considering the converter system as a gray-box model, the metaheuristic algorithm can be implemented for the targeted design inside such a gray-box. In this article, a genetic algorithm (GA) is employed in the DAB converter parametric design with an explicit fitness desire to help in discovering the high frequency oscillation (HFO) problem. Consequently, the splitting inductance tuning method is proposed for eliminating the HFO problem and minimizing inductors' loss. The methodology of implementing GA into converter parametric design, and the proposed splitting inductance tuning method are introduced and verified with a 1 MHz gallium nitride high-electron-mobility transistor based DAB converter prototype. The comparitive experimental results prove the effectiveness of the splitting inductance tuning method and achieve 4% efficiency enhancement with 200 W power delivering.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TIE.2021.3102398</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-4271-870X</orcidid><orcidid>https://orcid.org/0000-0001-7487-1317</orcidid><orcidid>https://orcid.org/0000-0001-8407-3167</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0278-0046
ispartof IEEE transactions on industrial electronics (1982), 2023-01, Vol.70 (1), p.522-531
issn 0278-0046
1557-9948
language eng
recordid cdi_ieee_primary_9511309
source IEEE Electronic Library (IEL) Journals
subjects Artificial intelligence
Artificial intelligence (AI)
dual active bridge
Electric bridges
Electric converters
Gallium nitrides
genetic algorithm
Genetic algorithms
gray-box model
Heuristic methods
High electron mobility transistors
High frequencies
Inductance
Inductors
Optimization
Parametric statistics
Semiconductor devices
Splitting
splitting inductance tuning method
Switches
Switching
Tuning
Zero voltage switching
zero-voltage switching (ZVS)
title Genetic Algorithm Assisted Parametric Design of Splitting Inductance in High Frequency GaN-Based Dual Active Bridge Converter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T18%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Algorithm%20Assisted%20Parametric%20Design%20of%20Splitting%20Inductance%20in%20High%20Frequency%20GaN-Based%20Dual%20Active%20Bridge%20Converter&rft.jtitle=IEEE%20transactions%20on%20industrial%20electronics%20(1982)&rft.au=Wang,%20Chang&rft.date=2023-01&rft.volume=70&rft.issue=1&rft.spage=522&rft.epage=531&rft.pages=522-531&rft.issn=0278-0046&rft.eissn=1557-9948&rft.coden=ITIED6&rft_id=info:doi/10.1109/TIE.2021.3102398&rft_dat=%3Cproquest_ieee_%3E2706892120%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c333t-57fc3f95cbfbcf933e3caf3eea541655b900c69838a559cd61e9a8b91e330adf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2706892120&rft_id=info:pmid/&rft_ieee_id=9511309&rfr_iscdi=true