Loading…

Detailed Modeling of the Low Energy Storage Quadratic Boost Converter

The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2022-02, Vol.37 (2), p.1885-1904
Main Authors: Lopez-Santos, Oswaldo, Varon, Nicolas Lopez, Rosas-Caro, Julio C., Mayo-Maldonado, Jonathan C., Valdez-Resendiz, Jesus E.
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1904
container_issue 2
container_start_page 1885
container_title IEEE transactions on power electronics
container_volume 37
creator Lopez-Santos, Oswaldo
Varon, Nicolas Lopez
Rosas-Caro, Julio C.
Mayo-Maldonado, Jonathan C.
Valdez-Resendiz, Jesus E.
description The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180° phase shift between the controlled switch gate signals. Nevertheless, this feature imposes a relevant challenge in terms of modeling, since traditional averaging an ripple estimation techniques cannot provide an accurate approximation to the actual switching dynamics of the converter. Motivated by this issue, in this article, we provide a complete quantitative analysis of both the steady-state and dynamic behavior of the LES-QBC, giving a fine understanding of their operation in continuous conduction mode when a pulse width modulator is used. The voltage gain, ripple factor, and dynamic behavior are modeled considering parasitic resistances and a wide operation range for the input voltage and the load. The demonstrated performance corroborates the high value of the converter for several applications in the industry. Every theoretical prediction is fully validated via simulations and experimental results.
doi_str_mv 10.1109/TPEL.2021.3105081
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9514400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9514400</ieee_id><sourcerecordid>2582247966</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-1b1d8f8d08af94da88e91bb115c312a4d463260576591bfa2886bd9a121e0c503</originalsourceid><addsrcrecordid>eNotjUtLw0AURgdRsFZ_gLgZcJ167zzSmaXW-ICIinUdJp2bmlIzdTKx9N9bqKsDH4fvMHaJMEEEezN_K8qJAIETiaDB4BEboVWYAcL0mI3AGJ0Za-UpO-v7FQAqDThixT0l167J85fgad12Sx4anr6Il2HLi47icsc_UohuSfx9cD661C74XQh94rPQ_VJMFM_ZSePWPV38c8w-H4r57CkrXx-fZ7dl1gqQKcMavWmMB-Maq7wzhizWNaJeSBROeZVLkYOe5nq_N04Yk9feOhRIsNAgx-z68LuJ4WegPlWrMMRun6yENkKoqc3zvXV1sFoiqjax_XZxV1mNSgHIPwrJVRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582247966</pqid></control><display><type>article</type><title>Detailed Modeling of the Low Energy Storage Quadratic Boost Converter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lopez-Santos, Oswaldo ; Varon, Nicolas Lopez ; Rosas-Caro, Julio C. ; Mayo-Maldonado, Jonathan C. ; Valdez-Resendiz, Jesus E.</creator><creatorcontrib>Lopez-Santos, Oswaldo ; Varon, Nicolas Lopez ; Rosas-Caro, Julio C. ; Mayo-Maldonado, Jonathan C. ; Valdez-Resendiz, Jesus E.</creatorcontrib><description>The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180° phase shift between the controlled switch gate signals. Nevertheless, this feature imposes a relevant challenge in terms of modeling, since traditional averaging an ripple estimation techniques cannot provide an accurate approximation to the actual switching dynamics of the converter. Motivated by this issue, in this article, we provide a complete quantitative analysis of both the steady-state and dynamic behavior of the LES-QBC, giving a fine understanding of their operation in continuous conduction mode when a pulse width modulator is used. The voltage gain, ripple factor, and dynamic behavior are modeled considering parasitic resistances and a wide operation range for the input voltage and the load. The demonstrated performance corroborates the high value of the converter for several applications in the industry. Every theoretical prediction is fully validated via simulations and experimental results.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3105081</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Capacitors ; Converters ; DC–DC power converters ; Dynamic response ; Energy storage ; Inductors ; modeling of power converters ; Modelling ; Pulse duration ; Pulse width modulation ; pulsewidth modulation converters ; Quadratic boost converter ; Resistance ; Ripples ; Switches ; Topology ; Voltage gain</subject><ispartof>IEEE transactions on power electronics, 2022-02, Vol.37 (2), p.1885-1904</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5113-2570 ; 0000-0002-1889-1353 ; 0000-0003-0161-0575 ; 0000-0001-7166-0813 ; 0000-0003-2513-2395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9514400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lopez-Santos, Oswaldo</creatorcontrib><creatorcontrib>Varon, Nicolas Lopez</creatorcontrib><creatorcontrib>Rosas-Caro, Julio C.</creatorcontrib><creatorcontrib>Mayo-Maldonado, Jonathan C.</creatorcontrib><creatorcontrib>Valdez-Resendiz, Jesus E.</creatorcontrib><title>Detailed Modeling of the Low Energy Storage Quadratic Boost Converter</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180° phase shift between the controlled switch gate signals. Nevertheless, this feature imposes a relevant challenge in terms of modeling, since traditional averaging an ripple estimation techniques cannot provide an accurate approximation to the actual switching dynamics of the converter. Motivated by this issue, in this article, we provide a complete quantitative analysis of both the steady-state and dynamic behavior of the LES-QBC, giving a fine understanding of their operation in continuous conduction mode when a pulse width modulator is used. The voltage gain, ripple factor, and dynamic behavior are modeled considering parasitic resistances and a wide operation range for the input voltage and the load. The demonstrated performance corroborates the high value of the converter for several applications in the industry. Every theoretical prediction is fully validated via simulations and experimental results.</description><subject>Capacitance</subject><subject>Capacitors</subject><subject>Converters</subject><subject>DC–DC power converters</subject><subject>Dynamic response</subject><subject>Energy storage</subject><subject>Inductors</subject><subject>modeling of power converters</subject><subject>Modelling</subject><subject>Pulse duration</subject><subject>Pulse width modulation</subject><subject>pulsewidth modulation converters</subject><subject>Quadratic boost converter</subject><subject>Resistance</subject><subject>Ripples</subject><subject>Switches</subject><subject>Topology</subject><subject>Voltage gain</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjUtLw0AURgdRsFZ_gLgZcJ167zzSmaXW-ICIinUdJp2bmlIzdTKx9N9bqKsDH4fvMHaJMEEEezN_K8qJAIETiaDB4BEboVWYAcL0mI3AGJ0Za-UpO-v7FQAqDThixT0l167J85fgad12Sx4anr6Il2HLi47icsc_UohuSfx9cD661C74XQh94rPQ_VJMFM_ZSePWPV38c8w-H4r57CkrXx-fZ7dl1gqQKcMavWmMB-Maq7wzhizWNaJeSBROeZVLkYOe5nq_N04Yk9feOhRIsNAgx-z68LuJ4WegPlWrMMRun6yENkKoqc3zvXV1sFoiqjax_XZxV1mNSgHIPwrJVRw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Lopez-Santos, Oswaldo</creator><creator>Varon, Nicolas Lopez</creator><creator>Rosas-Caro, Julio C.</creator><creator>Mayo-Maldonado, Jonathan C.</creator><creator>Valdez-Resendiz, Jesus E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5113-2570</orcidid><orcidid>https://orcid.org/0000-0002-1889-1353</orcidid><orcidid>https://orcid.org/0000-0003-0161-0575</orcidid><orcidid>https://orcid.org/0000-0001-7166-0813</orcidid><orcidid>https://orcid.org/0000-0003-2513-2395</orcidid></search><sort><creationdate>20220201</creationdate><title>Detailed Modeling of the Low Energy Storage Quadratic Boost Converter</title><author>Lopez-Santos, Oswaldo ; Varon, Nicolas Lopez ; Rosas-Caro, Julio C. ; Mayo-Maldonado, Jonathan C. ; Valdez-Resendiz, Jesus E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-1b1d8f8d08af94da88e91bb115c312a4d463260576591bfa2886bd9a121e0c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>Capacitors</topic><topic>Converters</topic><topic>DC–DC power converters</topic><topic>Dynamic response</topic><topic>Energy storage</topic><topic>Inductors</topic><topic>modeling of power converters</topic><topic>Modelling</topic><topic>Pulse duration</topic><topic>Pulse width modulation</topic><topic>pulsewidth modulation converters</topic><topic>Quadratic boost converter</topic><topic>Resistance</topic><topic>Ripples</topic><topic>Switches</topic><topic>Topology</topic><topic>Voltage gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Santos, Oswaldo</creatorcontrib><creatorcontrib>Varon, Nicolas Lopez</creatorcontrib><creatorcontrib>Rosas-Caro, Julio C.</creatorcontrib><creatorcontrib>Mayo-Maldonado, Jonathan C.</creatorcontrib><creatorcontrib>Valdez-Resendiz, Jesus E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Santos, Oswaldo</au><au>Varon, Nicolas Lopez</au><au>Rosas-Caro, Julio C.</au><au>Mayo-Maldonado, Jonathan C.</au><au>Valdez-Resendiz, Jesus E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Modeling of the Low Energy Storage Quadratic Boost Converter</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>37</volume><issue>2</issue><spage>1885</spage><epage>1904</epage><pages>1885-1904</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180° phase shift between the controlled switch gate signals. Nevertheless, this feature imposes a relevant challenge in terms of modeling, since traditional averaging an ripple estimation techniques cannot provide an accurate approximation to the actual switching dynamics of the converter. Motivated by this issue, in this article, we provide a complete quantitative analysis of both the steady-state and dynamic behavior of the LES-QBC, giving a fine understanding of their operation in continuous conduction mode when a pulse width modulator is used. The voltage gain, ripple factor, and dynamic behavior are modeled considering parasitic resistances and a wide operation range for the input voltage and the load. The demonstrated performance corroborates the high value of the converter for several applications in the industry. Every theoretical prediction is fully validated via simulations and experimental results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3105081</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5113-2570</orcidid><orcidid>https://orcid.org/0000-0002-1889-1353</orcidid><orcidid>https://orcid.org/0000-0003-0161-0575</orcidid><orcidid>https://orcid.org/0000-0001-7166-0813</orcidid><orcidid>https://orcid.org/0000-0003-2513-2395</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0885-8993
ispartof IEEE transactions on power electronics, 2022-02, Vol.37 (2), p.1885-1904
issn 0885-8993
1941-0107
language eng
recordid cdi_ieee_primary_9514400
source IEEE Electronic Library (IEL) Journals
subjects Capacitance
Capacitors
Converters
DC–DC power converters
Dynamic response
Energy storage
Inductors
modeling of power converters
Modelling
Pulse duration
Pulse width modulation
pulsewidth modulation converters
Quadratic boost converter
Resistance
Ripples
Switches
Topology
Voltage gain
title Detailed Modeling of the Low Energy Storage Quadratic Boost Converter
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Modeling%20of%20the%20Low%20Energy%20Storage%20Quadratic%20Boost%20Converter&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Lopez-Santos,%20Oswaldo&rft.date=2022-02-01&rft.volume=37&rft.issue=2&rft.spage=1885&rft.epage=1904&rft.pages=1885-1904&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3105081&rft_dat=%3Cproquest_ieee_%3E2582247966%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-1b1d8f8d08af94da88e91bb115c312a4d463260576591bfa2886bd9a121e0c503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582247966&rft_id=info:pmid/&rft_ieee_id=9514400&rfr_iscdi=true