Loading…
Detailed Modeling of the Low Energy Storage Quadratic Boost Converter
The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180...
Saved in:
Published in: | IEEE transactions on power electronics 2022-02, Vol.37 (2), p.1885-1904 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1904 |
container_issue | 2 |
container_start_page | 1885 |
container_title | IEEE transactions on power electronics |
container_volume | 37 |
creator | Lopez-Santos, Oswaldo Varon, Nicolas Lopez Rosas-Caro, Julio C. Mayo-Maldonado, Jonathan C. Valdez-Resendiz, Jesus E. |
description | The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180° phase shift between the controlled switch gate signals. Nevertheless, this feature imposes a relevant challenge in terms of modeling, since traditional averaging an ripple estimation techniques cannot provide an accurate approximation to the actual switching dynamics of the converter. Motivated by this issue, in this article, we provide a complete quantitative analysis of both the steady-state and dynamic behavior of the LES-QBC, giving a fine understanding of their operation in continuous conduction mode when a pulse width modulator is used. The voltage gain, ripple factor, and dynamic behavior are modeled considering parasitic resistances and a wide operation range for the input voltage and the load. The demonstrated performance corroborates the high value of the converter for several applications in the industry. Every theoretical prediction is fully validated via simulations and experimental results. |
doi_str_mv | 10.1109/TPEL.2021.3105081 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9514400</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9514400</ieee_id><sourcerecordid>2582247966</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-1b1d8f8d08af94da88e91bb115c312a4d463260576591bfa2886bd9a121e0c503</originalsourceid><addsrcrecordid>eNotjUtLw0AURgdRsFZ_gLgZcJ167zzSmaXW-ICIinUdJp2bmlIzdTKx9N9bqKsDH4fvMHaJMEEEezN_K8qJAIETiaDB4BEboVWYAcL0mI3AGJ0Za-UpO-v7FQAqDThixT0l167J85fgad12Sx4anr6Il2HLi47icsc_UohuSfx9cD661C74XQh94rPQ_VJMFM_ZSePWPV38c8w-H4r57CkrXx-fZ7dl1gqQKcMavWmMB-Maq7wzhizWNaJeSBROeZVLkYOe5nq_N04Yk9feOhRIsNAgx-z68LuJ4WegPlWrMMRun6yENkKoqc3zvXV1sFoiqjax_XZxV1mNSgHIPwrJVRw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582247966</pqid></control><display><type>article</type><title>Detailed Modeling of the Low Energy Storage Quadratic Boost Converter</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Lopez-Santos, Oswaldo ; Varon, Nicolas Lopez ; Rosas-Caro, Julio C. ; Mayo-Maldonado, Jonathan C. ; Valdez-Resendiz, Jesus E.</creator><creatorcontrib>Lopez-Santos, Oswaldo ; Varon, Nicolas Lopez ; Rosas-Caro, Julio C. ; Mayo-Maldonado, Jonathan C. ; Valdez-Resendiz, Jesus E.</creatorcontrib><description>The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180° phase shift between the controlled switch gate signals. Nevertheless, this feature imposes a relevant challenge in terms of modeling, since traditional averaging an ripple estimation techniques cannot provide an accurate approximation to the actual switching dynamics of the converter. Motivated by this issue, in this article, we provide a complete quantitative analysis of both the steady-state and dynamic behavior of the LES-QBC, giving a fine understanding of their operation in continuous conduction mode when a pulse width modulator is used. The voltage gain, ripple factor, and dynamic behavior are modeled considering parasitic resistances and a wide operation range for the input voltage and the load. The demonstrated performance corroborates the high value of the converter for several applications in the industry. Every theoretical prediction is fully validated via simulations and experimental results.</description><identifier>ISSN: 0885-8993</identifier><identifier>EISSN: 1941-0107</identifier><identifier>DOI: 10.1109/TPEL.2021.3105081</identifier><identifier>CODEN: ITPEE8</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Capacitance ; Capacitors ; Converters ; DC–DC power converters ; Dynamic response ; Energy storage ; Inductors ; modeling of power converters ; Modelling ; Pulse duration ; Pulse width modulation ; pulsewidth modulation converters ; Quadratic boost converter ; Resistance ; Ripples ; Switches ; Topology ; Voltage gain</subject><ispartof>IEEE transactions on power electronics, 2022-02, Vol.37 (2), p.1885-1904</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-5113-2570 ; 0000-0002-1889-1353 ; 0000-0003-0161-0575 ; 0000-0001-7166-0813 ; 0000-0003-2513-2395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9514400$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Lopez-Santos, Oswaldo</creatorcontrib><creatorcontrib>Varon, Nicolas Lopez</creatorcontrib><creatorcontrib>Rosas-Caro, Julio C.</creatorcontrib><creatorcontrib>Mayo-Maldonado, Jonathan C.</creatorcontrib><creatorcontrib>Valdez-Resendiz, Jesus E.</creatorcontrib><title>Detailed Modeling of the Low Energy Storage Quadratic Boost Converter</title><title>IEEE transactions on power electronics</title><addtitle>TPEL</addtitle><description>The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180° phase shift between the controlled switch gate signals. Nevertheless, this feature imposes a relevant challenge in terms of modeling, since traditional averaging an ripple estimation techniques cannot provide an accurate approximation to the actual switching dynamics of the converter. Motivated by this issue, in this article, we provide a complete quantitative analysis of both the steady-state and dynamic behavior of the LES-QBC, giving a fine understanding of their operation in continuous conduction mode when a pulse width modulator is used. The voltage gain, ripple factor, and dynamic behavior are modeled considering parasitic resistances and a wide operation range for the input voltage and the load. The demonstrated performance corroborates the high value of the converter for several applications in the industry. Every theoretical prediction is fully validated via simulations and experimental results.</description><subject>Capacitance</subject><subject>Capacitors</subject><subject>Converters</subject><subject>DC–DC power converters</subject><subject>Dynamic response</subject><subject>Energy storage</subject><subject>Inductors</subject><subject>modeling of power converters</subject><subject>Modelling</subject><subject>Pulse duration</subject><subject>Pulse width modulation</subject><subject>pulsewidth modulation converters</subject><subject>Quadratic boost converter</subject><subject>Resistance</subject><subject>Ripples</subject><subject>Switches</subject><subject>Topology</subject><subject>Voltage gain</subject><issn>0885-8993</issn><issn>1941-0107</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNotjUtLw0AURgdRsFZ_gLgZcJ167zzSmaXW-ICIinUdJp2bmlIzdTKx9N9bqKsDH4fvMHaJMEEEezN_K8qJAIETiaDB4BEboVWYAcL0mI3AGJ0Za-UpO-v7FQAqDThixT0l167J85fgad12Sx4anr6Il2HLi47icsc_UohuSfx9cD661C74XQh94rPQ_VJMFM_ZSePWPV38c8w-H4r57CkrXx-fZ7dl1gqQKcMavWmMB-Maq7wzhizWNaJeSBROeZVLkYOe5nq_N04Yk9feOhRIsNAgx-z68LuJ4WegPlWrMMRun6yENkKoqc3zvXV1sFoiqjax_XZxV1mNSgHIPwrJVRw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Lopez-Santos, Oswaldo</creator><creator>Varon, Nicolas Lopez</creator><creator>Rosas-Caro, Julio C.</creator><creator>Mayo-Maldonado, Jonathan C.</creator><creator>Valdez-Resendiz, Jesus E.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5113-2570</orcidid><orcidid>https://orcid.org/0000-0002-1889-1353</orcidid><orcidid>https://orcid.org/0000-0003-0161-0575</orcidid><orcidid>https://orcid.org/0000-0001-7166-0813</orcidid><orcidid>https://orcid.org/0000-0003-2513-2395</orcidid></search><sort><creationdate>20220201</creationdate><title>Detailed Modeling of the Low Energy Storage Quadratic Boost Converter</title><author>Lopez-Santos, Oswaldo ; Varon, Nicolas Lopez ; Rosas-Caro, Julio C. ; Mayo-Maldonado, Jonathan C. ; Valdez-Resendiz, Jesus E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-1b1d8f8d08af94da88e91bb115c312a4d463260576591bfa2886bd9a121e0c503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Capacitance</topic><topic>Capacitors</topic><topic>Converters</topic><topic>DC–DC power converters</topic><topic>Dynamic response</topic><topic>Energy storage</topic><topic>Inductors</topic><topic>modeling of power converters</topic><topic>Modelling</topic><topic>Pulse duration</topic><topic>Pulse width modulation</topic><topic>pulsewidth modulation converters</topic><topic>Quadratic boost converter</topic><topic>Resistance</topic><topic>Ripples</topic><topic>Switches</topic><topic>Topology</topic><topic>Voltage gain</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lopez-Santos, Oswaldo</creatorcontrib><creatorcontrib>Varon, Nicolas Lopez</creatorcontrib><creatorcontrib>Rosas-Caro, Julio C.</creatorcontrib><creatorcontrib>Mayo-Maldonado, Jonathan C.</creatorcontrib><creatorcontrib>Valdez-Resendiz, Jesus E.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on power electronics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lopez-Santos, Oswaldo</au><au>Varon, Nicolas Lopez</au><au>Rosas-Caro, Julio C.</au><au>Mayo-Maldonado, Jonathan C.</au><au>Valdez-Resendiz, Jesus E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detailed Modeling of the Low Energy Storage Quadratic Boost Converter</atitle><jtitle>IEEE transactions on power electronics</jtitle><stitle>TPEL</stitle><date>2022-02-01</date><risdate>2022</risdate><volume>37</volume><issue>2</issue><spage>1885</spage><epage>1904</epage><pages>1885-1904</pages><issn>0885-8993</issn><eissn>1941-0107</eissn><coden>ITPEE8</coden><abstract>The low energy storage quadratic boost converter (LES-QBC) was recently proposed as an advantageous topology in terms of reduced output voltage ripple and fast dynamic response, besides high power density and reduced energy storage. The topological configuration can be exploited mainly through a 180° phase shift between the controlled switch gate signals. Nevertheless, this feature imposes a relevant challenge in terms of modeling, since traditional averaging an ripple estimation techniques cannot provide an accurate approximation to the actual switching dynamics of the converter. Motivated by this issue, in this article, we provide a complete quantitative analysis of both the steady-state and dynamic behavior of the LES-QBC, giving a fine understanding of their operation in continuous conduction mode when a pulse width modulator is used. The voltage gain, ripple factor, and dynamic behavior are modeled considering parasitic resistances and a wide operation range for the input voltage and the load. The demonstrated performance corroborates the high value of the converter for several applications in the industry. Every theoretical prediction is fully validated via simulations and experimental results.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TPEL.2021.3105081</doi><tpages>20</tpages><orcidid>https://orcid.org/0000-0001-5113-2570</orcidid><orcidid>https://orcid.org/0000-0002-1889-1353</orcidid><orcidid>https://orcid.org/0000-0003-0161-0575</orcidid><orcidid>https://orcid.org/0000-0001-7166-0813</orcidid><orcidid>https://orcid.org/0000-0003-2513-2395</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8993 |
ispartof | IEEE transactions on power electronics, 2022-02, Vol.37 (2), p.1885-1904 |
issn | 0885-8993 1941-0107 |
language | eng |
recordid | cdi_ieee_primary_9514400 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Capacitance Capacitors Converters DC–DC power converters Dynamic response Energy storage Inductors modeling of power converters Modelling Pulse duration Pulse width modulation pulsewidth modulation converters Quadratic boost converter Resistance Ripples Switches Topology Voltage gain |
title | Detailed Modeling of the Low Energy Storage Quadratic Boost Converter |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T07%3A49%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detailed%20Modeling%20of%20the%20Low%20Energy%20Storage%20Quadratic%20Boost%20Converter&rft.jtitle=IEEE%20transactions%20on%20power%20electronics&rft.au=Lopez-Santos,%20Oswaldo&rft.date=2022-02-01&rft.volume=37&rft.issue=2&rft.spage=1885&rft.epage=1904&rft.pages=1885-1904&rft.issn=0885-8993&rft.eissn=1941-0107&rft.coden=ITPEE8&rft_id=info:doi/10.1109/TPEL.2021.3105081&rft_dat=%3Cproquest_ieee_%3E2582247966%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-1b1d8f8d08af94da88e91bb115c312a4d463260576591bfa2886bd9a121e0c503%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582247966&rft_id=info:pmid/&rft_ieee_id=9514400&rfr_iscdi=true |