Loading…
Multivariate versus Univariate Sensor Selection for Spatial Field Estimation
The paper discusses the sensor selection problem in estimating spatial fields. It is demonstrated that selecting a subset of sensors depends on modelling spatial processes. It is first proposed to exploit Gaussian process (GP) to model a univariate spatial field and multivariate GP (MGP) to jointly...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The paper discusses the sensor selection problem in estimating spatial fields. It is demonstrated that selecting a subset of sensors depends on modelling spatial processes. It is first proposed to exploit Gaussian process (GP) to model a univariate spatial field and multivariate GP (MGP) to jointly represent multivariate spatial phenomena. A Matérn cross-covariance function is employed in the MGP model to guarantee its cross-covariance matrices to be positive semi-definite. We then consider two corresponding univariate and multivariate sensor selection problems in effectively monitoring multiple spatial random fields. The sensor selection approaches were implemented in the real-world experiments and their performances were compared. Difference of results obtained by the univariate and multivariate sensor selection techniques is insignificant; that is, either of the methods can be efficiently used in practice. |
---|---|
ISSN: | 2158-2297 |
DOI: | 10.1109/ICIEA51954.2021.9516093 |