Loading…

Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types

In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensiona...

Full description

Saved in:
Bibliographic Details
Main Authors: Zhu, Yingying, Zhao, Haiquan, Song, Pucha
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 1214
container_issue
container_start_page 1211
container_title
container_volume
creator Zhu, Yingying
Zhao, Haiquan
Song, Pucha
description In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensional reproductive kernel Hilbert feature space (RKHFS). However, the operations of kernel function require incremental costs with mass input data. To solve this problems, the random Fourier filters (RFFs) achieves nonlinear approximation by mapping the filtered reference signal to the random Fourier feature space (RFFS). This article briefly reviews these two models, and proposes the K-FxHSF and RFF-FxHSF algorithms for impulsive noise environment. Simulation experiments show that the proposed algorithm can achieve ideal performance in the case of nonlinear noise paths.
doi_str_mv 10.1109/ICIEA51954.2021.9516266
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9516266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9516266</ieee_id><sourcerecordid>9516266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-d5b7776df6c20f45f81f764a3e09ebfc14f68eeeabe67f90bbcee1658d7ad70c3</originalsourceid><addsrcrecordid>eNotkM1KAzEcxKMgWGufwIN5ga352CS7x2VpbbHqwXou2ew_NZImS7IKfXsX7Glg5scMDEKPlCwpJfXTtt2uGkFrUS4ZYXRZCyqZlFfojkopSsbKil-jGaOiKhir1S1a5PxNCOFUqYrTGTpuzgOkLnpn8AcYHUa8_glmdDHgxh9jcuPXKWMbE36LwbsAOuFmyn9hMlwG3MYwpujxKfbgM44Wv0AK4PGrHgYXjng_LeR7dGO1z7C46Bx9rlf7dlPs3p-3bbMrHCN8LHrRKaVkb6VhxJbCVtQqWWoOpIbOGlpaWQGA7kAqW5OuMwBUiqpXulfE8Dl6-O91E3UYkjvpdD5cfuF_8X9aaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types</title><source>IEEE Xplore All Conference Series</source><creator>Zhu, Yingying ; Zhao, Haiquan ; Song, Pucha</creator><creatorcontrib>Zhu, Yingying ; Zhao, Haiquan ; Song, Pucha</creatorcontrib><description>In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensional reproductive kernel Hilbert feature space (RKHFS). However, the operations of kernel function require incremental costs with mass input data. To solve this problems, the random Fourier filters (RFFs) achieves nonlinear approximation by mapping the filtered reference signal to the random Fourier feature space (RFFS). This article briefly reviews these two models, and proposes the K-FxHSF and RFF-FxHSF algorithms for impulsive noise environment. Simulation experiments show that the proposed algorithm can achieve ideal performance in the case of nonlinear noise paths.</description><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 1665422483</identifier><identifier>EISBN: 9781665422482</identifier><identifier>DOI: 10.1109/ICIEA51954.2021.9516266</identifier><language>eng</language><publisher>IEEE</publisher><subject>active noise control ; Adaptive filters ; Aerospace electronics ; Approximation algorithms ; Conferences ; Control systems ; Filtering algorithms ; hyperbolic secant function ; Industrial electronics ; kernel adaptive filter ; random Fourier filter</subject><ispartof>2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 2021, p.1211-1214</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9516266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23928,23929,25138,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9516266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Yingying</creatorcontrib><creatorcontrib>Zhao, Haiquan</creatorcontrib><creatorcontrib>Song, Pucha</creatorcontrib><title>Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types</title><title>2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)</title><addtitle>ICIEA</addtitle><description>In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensional reproductive kernel Hilbert feature space (RKHFS). However, the operations of kernel function require incremental costs with mass input data. To solve this problems, the random Fourier filters (RFFs) achieves nonlinear approximation by mapping the filtered reference signal to the random Fourier feature space (RFFS). This article briefly reviews these two models, and proposes the K-FxHSF and RFF-FxHSF algorithms for impulsive noise environment. Simulation experiments show that the proposed algorithm can achieve ideal performance in the case of nonlinear noise paths.</description><subject>active noise control</subject><subject>Adaptive filters</subject><subject>Aerospace electronics</subject><subject>Approximation algorithms</subject><subject>Conferences</subject><subject>Control systems</subject><subject>Filtering algorithms</subject><subject>hyperbolic secant function</subject><subject>Industrial electronics</subject><subject>kernel adaptive filter</subject><subject>random Fourier filter</subject><issn>2158-2297</issn><isbn>1665422483</isbn><isbn>9781665422482</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEcxKMgWGufwIN5ga352CS7x2VpbbHqwXou2ew_NZImS7IKfXsX7Glg5scMDEKPlCwpJfXTtt2uGkFrUS4ZYXRZCyqZlFfojkopSsbKil-jGaOiKhir1S1a5PxNCOFUqYrTGTpuzgOkLnpn8AcYHUa8_glmdDHgxh9jcuPXKWMbE36LwbsAOuFmyn9hMlwG3MYwpujxKfbgM44Wv0AK4PGrHgYXjng_LeR7dGO1z7C46Bx9rlf7dlPs3p-3bbMrHCN8LHrRKaVkb6VhxJbCVtQqWWoOpIbOGlpaWQGA7kAqW5OuMwBUiqpXulfE8Dl6-O91E3UYkjvpdD5cfuF_8X9aaQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhu, Yingying</creator><creator>Zhao, Haiquan</creator><creator>Song, Pucha</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210801</creationdate><title>Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types</title><author>Zhu, Yingying ; Zhao, Haiquan ; Song, Pucha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-d5b7776df6c20f45f81f764a3e09ebfc14f68eeeabe67f90bbcee1658d7ad70c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>active noise control</topic><topic>Adaptive filters</topic><topic>Aerospace electronics</topic><topic>Approximation algorithms</topic><topic>Conferences</topic><topic>Control systems</topic><topic>Filtering algorithms</topic><topic>hyperbolic secant function</topic><topic>Industrial electronics</topic><topic>kernel adaptive filter</topic><topic>random Fourier filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yingying</creatorcontrib><creatorcontrib>Zhao, Haiquan</creatorcontrib><creatorcontrib>Song, Pucha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yingying</au><au>Zhao, Haiquan</au><au>Song, Pucha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types</atitle><btitle>2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)</btitle><stitle>ICIEA</stitle><date>2021-08-01</date><risdate>2021</risdate><spage>1211</spage><epage>1214</epage><pages>1211-1214</pages><eissn>2158-2297</eissn><eisbn>1665422483</eisbn><eisbn>9781665422482</eisbn><abstract>In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensional reproductive kernel Hilbert feature space (RKHFS). However, the operations of kernel function require incremental costs with mass input data. To solve this problems, the random Fourier filters (RFFs) achieves nonlinear approximation by mapping the filtered reference signal to the random Fourier feature space (RFFS). This article briefly reviews these two models, and proposes the K-FxHSF and RFF-FxHSF algorithms for impulsive noise environment. Simulation experiments show that the proposed algorithm can achieve ideal performance in the case of nonlinear noise paths.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA51954.2021.9516266</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2158-2297
ispartof 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 2021, p.1211-1214
issn 2158-2297
language eng
recordid cdi_ieee_primary_9516266
source IEEE Xplore All Conference Series
subjects active noise control
Adaptive filters
Aerospace electronics
Approximation algorithms
Conferences
Control systems
Filtering algorithms
hyperbolic secant function
Industrial electronics
kernel adaptive filter
random Fourier filter
title Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hyperbolic%20Secant%20Function%20Algorithms%20for%20Nonlinear%20Active%20Noise%20Control%20models%20of%20Kernel%20Mapping%20Types&rft.btitle=2021%20IEEE%2016th%20Conference%20on%20Industrial%20Electronics%20and%20Applications%20(ICIEA)&rft.au=Zhu,%20Yingying&rft.date=2021-08-01&rft.spage=1211&rft.epage=1214&rft.pages=1211-1214&rft.eissn=2158-2297&rft_id=info:doi/10.1109/ICIEA51954.2021.9516266&rft.eisbn=1665422483&rft.eisbn_list=9781665422482&rft_dat=%3Cieee_CHZPO%3E9516266%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-d5b7776df6c20f45f81f764a3e09ebfc14f68eeeabe67f90bbcee1658d7ad70c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9516266&rfr_iscdi=true