Loading…
Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types
In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensiona...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1214 |
container_issue | |
container_start_page | 1211 |
container_title | |
container_volume | |
creator | Zhu, Yingying Zhao, Haiquan Song, Pucha |
description | In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensional reproductive kernel Hilbert feature space (RKHFS). However, the operations of kernel function require incremental costs with mass input data. To solve this problems, the random Fourier filters (RFFs) achieves nonlinear approximation by mapping the filtered reference signal to the random Fourier feature space (RFFS). This article briefly reviews these two models, and proposes the K-FxHSF and RFF-FxHSF algorithms for impulsive noise environment. Simulation experiments show that the proposed algorithm can achieve ideal performance in the case of nonlinear noise paths. |
doi_str_mv | 10.1109/ICIEA51954.2021.9516266 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9516266</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9516266</ieee_id><sourcerecordid>9516266</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-d5b7776df6c20f45f81f764a3e09ebfc14f68eeeabe67f90bbcee1658d7ad70c3</originalsourceid><addsrcrecordid>eNotkM1KAzEcxKMgWGufwIN5ga352CS7x2VpbbHqwXou2ew_NZImS7IKfXsX7Glg5scMDEKPlCwpJfXTtt2uGkFrUS4ZYXRZCyqZlFfojkopSsbKil-jGaOiKhir1S1a5PxNCOFUqYrTGTpuzgOkLnpn8AcYHUa8_glmdDHgxh9jcuPXKWMbE36LwbsAOuFmyn9hMlwG3MYwpujxKfbgM44Wv0AK4PGrHgYXjng_LeR7dGO1z7C46Bx9rlf7dlPs3p-3bbMrHCN8LHrRKaVkb6VhxJbCVtQqWWoOpIbOGlpaWQGA7kAqW5OuMwBUiqpXulfE8Dl6-O91E3UYkjvpdD5cfuF_8X9aaQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types</title><source>IEEE Xplore All Conference Series</source><creator>Zhu, Yingying ; Zhao, Haiquan ; Song, Pucha</creator><creatorcontrib>Zhu, Yingying ; Zhao, Haiquan ; Song, Pucha</creatorcontrib><description>In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensional reproductive kernel Hilbert feature space (RKHFS). However, the operations of kernel function require incremental costs with mass input data. To solve this problems, the random Fourier filters (RFFs) achieves nonlinear approximation by mapping the filtered reference signal to the random Fourier feature space (RFFS). This article briefly reviews these two models, and proposes the K-FxHSF and RFF-FxHSF algorithms for impulsive noise environment. Simulation experiments show that the proposed algorithm can achieve ideal performance in the case of nonlinear noise paths.</description><identifier>EISSN: 2158-2297</identifier><identifier>EISBN: 1665422483</identifier><identifier>EISBN: 9781665422482</identifier><identifier>DOI: 10.1109/ICIEA51954.2021.9516266</identifier><language>eng</language><publisher>IEEE</publisher><subject>active noise control ; Adaptive filters ; Aerospace electronics ; Approximation algorithms ; Conferences ; Control systems ; Filtering algorithms ; hyperbolic secant function ; Industrial electronics ; kernel adaptive filter ; random Fourier filter</subject><ispartof>2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 2021, p.1211-1214</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9516266$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23928,23929,25138,27923,54553,54930</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9516266$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Zhu, Yingying</creatorcontrib><creatorcontrib>Zhao, Haiquan</creatorcontrib><creatorcontrib>Song, Pucha</creatorcontrib><title>Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types</title><title>2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)</title><addtitle>ICIEA</addtitle><description>In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensional reproductive kernel Hilbert feature space (RKHFS). However, the operations of kernel function require incremental costs with mass input data. To solve this problems, the random Fourier filters (RFFs) achieves nonlinear approximation by mapping the filtered reference signal to the random Fourier feature space (RFFS). This article briefly reviews these two models, and proposes the K-FxHSF and RFF-FxHSF algorithms for impulsive noise environment. Simulation experiments show that the proposed algorithm can achieve ideal performance in the case of nonlinear noise paths.</description><subject>active noise control</subject><subject>Adaptive filters</subject><subject>Aerospace electronics</subject><subject>Approximation algorithms</subject><subject>Conferences</subject><subject>Control systems</subject><subject>Filtering algorithms</subject><subject>hyperbolic secant function</subject><subject>Industrial electronics</subject><subject>kernel adaptive filter</subject><subject>random Fourier filter</subject><issn>2158-2297</issn><isbn>1665422483</isbn><isbn>9781665422482</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkM1KAzEcxKMgWGufwIN5ga352CS7x2VpbbHqwXou2ew_NZImS7IKfXsX7Glg5scMDEKPlCwpJfXTtt2uGkFrUS4ZYXRZCyqZlFfojkopSsbKil-jGaOiKhir1S1a5PxNCOFUqYrTGTpuzgOkLnpn8AcYHUa8_glmdDHgxh9jcuPXKWMbE36LwbsAOuFmyn9hMlwG3MYwpujxKfbgM44Wv0AK4PGrHgYXjng_LeR7dGO1z7C46Bx9rlf7dlPs3p-3bbMrHCN8LHrRKaVkb6VhxJbCVtQqWWoOpIbOGlpaWQGA7kAqW5OuMwBUiqpXulfE8Dl6-O91E3UYkjvpdD5cfuF_8X9aaQ</recordid><startdate>20210801</startdate><enddate>20210801</enddate><creator>Zhu, Yingying</creator><creator>Zhao, Haiquan</creator><creator>Song, Pucha</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210801</creationdate><title>Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types</title><author>Zhu, Yingying ; Zhao, Haiquan ; Song, Pucha</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-d5b7776df6c20f45f81f764a3e09ebfc14f68eeeabe67f90bbcee1658d7ad70c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>active noise control</topic><topic>Adaptive filters</topic><topic>Aerospace electronics</topic><topic>Approximation algorithms</topic><topic>Conferences</topic><topic>Control systems</topic><topic>Filtering algorithms</topic><topic>hyperbolic secant function</topic><topic>Industrial electronics</topic><topic>kernel adaptive filter</topic><topic>random Fourier filter</topic><toplevel>online_resources</toplevel><creatorcontrib>Zhu, Yingying</creatorcontrib><creatorcontrib>Zhao, Haiquan</creatorcontrib><creatorcontrib>Song, Pucha</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Zhu, Yingying</au><au>Zhao, Haiquan</au><au>Song, Pucha</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types</atitle><btitle>2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA)</btitle><stitle>ICIEA</stitle><date>2021-08-01</date><risdate>2021</risdate><spage>1211</spage><epage>1214</epage><pages>1211-1214</pages><eissn>2158-2297</eissn><eisbn>1665422483</eisbn><eisbn>9781665422482</eisbn><abstract>In the case of nonlinear characteristics of noise signals and control systems, the control effect of linear active noise control(ANC) algorithms will be degraded. The kernel adaptive filters (KAFs) can better solve the nonlinear problem by mapping the filtered reference signal to the high dimensional reproductive kernel Hilbert feature space (RKHFS). However, the operations of kernel function require incremental costs with mass input data. To solve this problems, the random Fourier filters (RFFs) achieves nonlinear approximation by mapping the filtered reference signal to the random Fourier feature space (RFFS). This article briefly reviews these two models, and proposes the K-FxHSF and RFF-FxHSF algorithms for impulsive noise environment. Simulation experiments show that the proposed algorithm can achieve ideal performance in the case of nonlinear noise paths.</abstract><pub>IEEE</pub><doi>10.1109/ICIEA51954.2021.9516266</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2158-2297 |
ispartof | 2021 IEEE 16th Conference on Industrial Electronics and Applications (ICIEA), 2021, p.1211-1214 |
issn | 2158-2297 |
language | eng |
recordid | cdi_ieee_primary_9516266 |
source | IEEE Xplore All Conference Series |
subjects | active noise control Adaptive filters Aerospace electronics Approximation algorithms Conferences Control systems Filtering algorithms hyperbolic secant function Industrial electronics kernel adaptive filter random Fourier filter |
title | Hyperbolic Secant Function Algorithms for Nonlinear Active Noise Control models of Kernel Mapping Types |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T13%3A31%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Hyperbolic%20Secant%20Function%20Algorithms%20for%20Nonlinear%20Active%20Noise%20Control%20models%20of%20Kernel%20Mapping%20Types&rft.btitle=2021%20IEEE%2016th%20Conference%20on%20Industrial%20Electronics%20and%20Applications%20(ICIEA)&rft.au=Zhu,%20Yingying&rft.date=2021-08-01&rft.spage=1211&rft.epage=1214&rft.pages=1211-1214&rft.eissn=2158-2297&rft_id=info:doi/10.1109/ICIEA51954.2021.9516266&rft.eisbn=1665422483&rft.eisbn_list=9781665422482&rft_dat=%3Cieee_CHZPO%3E9516266%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-d5b7776df6c20f45f81f764a3e09ebfc14f68eeeabe67f90bbcee1658d7ad70c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9516266&rfr_iscdi=true |