Loading…

DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise

It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is p...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on vehicular technology 2021-10, Vol.70 (10), p.10308-10319
Main Authors: Fang, Yunfei, Zhu, Shengqi, Zeng, Cao, Gao, Yongchan, Li, Shidong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3
cites cdi_FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3
container_end_page 10319
container_issue 10
container_start_page 10308
container_title IEEE transactions on vehicular technology
container_volume 70
creator Fang, Yunfei
Zhu, Shengqi
Zeng, Cao
Gao, Yongchan
Li, Shidong
description It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is proposed. The new approach is based on an improved rank-one correlation model for denoising. With an extended virtual aperture array, this technique is able to provide a high-resolution DOA estimation with limited snapshots and is robust to nonuniform noise. In addition, two effective algorithms are also derived to obtain noise-free SCMs. One is to obtain diagonal entries of the noise-free SCM from the off-diagonal entries based on the fact that diagonal entries of SCM across the array are identical. The other is based on matrix completion (MC) theory which uses the low rank property of the SCM. Numerical results demonstrate that the new approaches yield superior performance than existing techniques in DOA estimations for multiple and compactly placed sources.
doi_str_mv 10.1109/TVT.2021.3105673
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9516950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9516950</ieee_id><sourcerecordid>2582250727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYjuTdw0cT3Yx3RKl4ioJCiJgi6bDnMnFJgW20Hjv7eIcXXPTc65jw-hS0p6lBJ1M3ub9RhhtMcpEYXkR6hDFVeZ4kIdow4htJ8pkYtTdBbjKrV5rmgH-bvpAI9iaxvTWu8ifrftEk9sY1uo8Ksz27j0bcS3JqbeOzxutsF_Jv1i3DqbOsBDHwJsfuP4yVewwdbhuVs7_-Xws3c7Z2sfmiRthHN0UptNhIu_2kXz-9Fs-JhNpg_j4WCSLZiibVaRogJjcqBC1rniErjIgdW8EAUvF0KlFxnQkoEUOWem5KUgVFAiCyp5AbyLrg9z07UfO4itXvldcGmlZqLPmCCSyeQiB9ci-BgD1HobEonwrSnRe6w6YdV7rPoPa4pcHSIWAP7tStBCCcJ_APQCctw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582250727</pqid></control><display><type>article</type><title>DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise</title><source>IEEE Xplore (Online service)</source><creator>Fang, Yunfei ; Zhu, Shengqi ; Zeng, Cao ; Gao, Yongchan ; Li, Shidong</creator><creatorcontrib>Fang, Yunfei ; Zhu, Shengqi ; Zeng, Cao ; Gao, Yongchan ; Li, Shidong</creatorcontrib><description>It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is proposed. The new approach is based on an improved rank-one correlation model for denoising. With an extended virtual aperture array, this technique is able to provide a high-resolution DOA estimation with limited snapshots and is robust to nonuniform noise. In addition, two effective algorithms are also derived to obtain noise-free SCMs. One is to obtain diagonal entries of the noise-free SCM from the off-diagonal entries based on the fact that diagonal entries of SCM across the array are identical. The other is based on matrix completion (MC) theory which uses the low rank property of the SCM. Numerical results demonstrate that the new approaches yield superior performance than existing techniques in DOA estimations for multiple and compactly placed sources.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2021.3105673</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; alternating grid optimization (AGO) ; Arrays ; Computational modeling ; Correlation ; Covariance matrices ; Covariance matrix ; Direction of arrival ; Direction of arrival (DOA) ; Direction-of-arrival estimation ; Estimation ; Mathematical analysis ; matrix completion (MC) ; Noise ; Noise reduction ; nonuniform noise ; Optimization ; Robustness (mathematics) ; sparse reconstruction (SR)</subject><ispartof>IEEE transactions on vehicular technology, 2021-10, Vol.70 (10), p.10308-10319</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3</citedby><cites>FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3</cites><orcidid>0000-0003-1446-2081 ; 0000-0003-0522-0582 ; 0000-0001-5842-3629 ; 0000-0002-3119-4472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9516950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fang, Yunfei</creatorcontrib><creatorcontrib>Zhu, Shengqi</creatorcontrib><creatorcontrib>Zeng, Cao</creatorcontrib><creatorcontrib>Gao, Yongchan</creatorcontrib><creatorcontrib>Li, Shidong</creatorcontrib><title>DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is proposed. The new approach is based on an improved rank-one correlation model for denoising. With an extended virtual aperture array, this technique is able to provide a high-resolution DOA estimation with limited snapshots and is robust to nonuniform noise. In addition, two effective algorithms are also derived to obtain noise-free SCMs. One is to obtain diagonal entries of the noise-free SCM from the off-diagonal entries based on the fact that diagonal entries of SCM across the array are identical. The other is based on matrix completion (MC) theory which uses the low rank property of the SCM. Numerical results demonstrate that the new approaches yield superior performance than existing techniques in DOA estimations for multiple and compactly placed sources.</description><subject>Algorithms</subject><subject>alternating grid optimization (AGO)</subject><subject>Arrays</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Direction of arrival</subject><subject>Direction of arrival (DOA)</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Mathematical analysis</subject><subject>matrix completion (MC)</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>nonuniform noise</subject><subject>Optimization</subject><subject>Robustness (mathematics)</subject><subject>sparse reconstruction (SR)</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAjEUhRujiYjuTdw0cT3Yx3RKl4ioJCiJgi6bDnMnFJgW20Hjv7eIcXXPTc65jw-hS0p6lBJ1M3ub9RhhtMcpEYXkR6hDFVeZ4kIdow4htJ8pkYtTdBbjKrV5rmgH-bvpAI9iaxvTWu8ifrftEk9sY1uo8Ksz27j0bcS3JqbeOzxutsF_Jv1i3DqbOsBDHwJsfuP4yVewwdbhuVs7_-Xws3c7Z2sfmiRthHN0UptNhIu_2kXz-9Fs-JhNpg_j4WCSLZiibVaRogJjcqBC1rniErjIgdW8EAUvF0KlFxnQkoEUOWem5KUgVFAiCyp5AbyLrg9z07UfO4itXvldcGmlZqLPmCCSyeQiB9ci-BgD1HobEonwrSnRe6w6YdV7rPoPa4pcHSIWAP7tStBCCcJ_APQCctw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Fang, Yunfei</creator><creator>Zhu, Shengqi</creator><creator>Zeng, Cao</creator><creator>Gao, Yongchan</creator><creator>Li, Shidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1446-2081</orcidid><orcidid>https://orcid.org/0000-0003-0522-0582</orcidid><orcidid>https://orcid.org/0000-0001-5842-3629</orcidid><orcidid>https://orcid.org/0000-0002-3119-4472</orcidid></search><sort><creationdate>20211001</creationdate><title>DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise</title><author>Fang, Yunfei ; Zhu, Shengqi ; Zeng, Cao ; Gao, Yongchan ; Li, Shidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>alternating grid optimization (AGO)</topic><topic>Arrays</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Direction of arrival</topic><topic>Direction of arrival (DOA)</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Mathematical analysis</topic><topic>matrix completion (MC)</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>nonuniform noise</topic><topic>Optimization</topic><topic>Robustness (mathematics)</topic><topic>sparse reconstruction (SR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yunfei</creatorcontrib><creatorcontrib>Zhu, Shengqi</creatorcontrib><creatorcontrib>Zeng, Cao</creatorcontrib><creatorcontrib>Gao, Yongchan</creatorcontrib><creatorcontrib>Li, Shidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yunfei</au><au>Zhu, Shengqi</au><au>Zeng, Cao</au><au>Gao, Yongchan</au><au>Li, Shidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>70</volume><issue>10</issue><spage>10308</spage><epage>10319</epage><pages>10308-10319</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is proposed. The new approach is based on an improved rank-one correlation model for denoising. With an extended virtual aperture array, this technique is able to provide a high-resolution DOA estimation with limited snapshots and is robust to nonuniform noise. In addition, two effective algorithms are also derived to obtain noise-free SCMs. One is to obtain diagonal entries of the noise-free SCM from the off-diagonal entries based on the fact that diagonal entries of SCM across the array are identical. The other is based on matrix completion (MC) theory which uses the low rank property of the SCM. Numerical results demonstrate that the new approaches yield superior performance than existing techniques in DOA estimations for multiple and compactly placed sources.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2021.3105673</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1446-2081</orcidid><orcidid>https://orcid.org/0000-0003-0522-0582</orcidid><orcidid>https://orcid.org/0000-0001-5842-3629</orcidid><orcidid>https://orcid.org/0000-0002-3119-4472</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0018-9545
ispartof IEEE transactions on vehicular technology, 2021-10, Vol.70 (10), p.10308-10319
issn 0018-9545
1939-9359
language eng
recordid cdi_ieee_primary_9516950
source IEEE Xplore (Online service)
subjects Algorithms
alternating grid optimization (AGO)
Arrays
Computational modeling
Correlation
Covariance matrices
Covariance matrix
Direction of arrival
Direction of arrival (DOA)
Direction-of-arrival estimation
Estimation
Mathematical analysis
matrix completion (MC)
Noise
Noise reduction
nonuniform noise
Optimization
Robustness (mathematics)
sparse reconstruction (SR)
title DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DOA%20Estimations%20With%20Limited%20Snapshots%20Based%20on%20Improved%20Rank-One%20Correlation%20Model%20in%20Unknown%20Nonuniform%20Noise&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Fang,%20Yunfei&rft.date=2021-10-01&rft.volume=70&rft.issue=10&rft.spage=10308&rft.epage=10319&rft.pages=10308-10319&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2021.3105673&rft_dat=%3Cproquest_ieee_%3E2582250727%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582250727&rft_id=info:pmid/&rft_ieee_id=9516950&rfr_iscdi=true