Loading…
DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise
It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is p...
Saved in:
Published in: | IEEE transactions on vehicular technology 2021-10, Vol.70 (10), p.10308-10319 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3 |
container_end_page | 10319 |
container_issue | 10 |
container_start_page | 10308 |
container_title | IEEE transactions on vehicular technology |
container_volume | 70 |
creator | Fang, Yunfei Zhu, Shengqi Zeng, Cao Gao, Yongchan Li, Shidong |
description | It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is proposed. The new approach is based on an improved rank-one correlation model for denoising. With an extended virtual aperture array, this technique is able to provide a high-resolution DOA estimation with limited snapshots and is robust to nonuniform noise. In addition, two effective algorithms are also derived to obtain noise-free SCMs. One is to obtain diagonal entries of the noise-free SCM from the off-diagonal entries based on the fact that diagonal entries of SCM across the array are identical. The other is based on matrix completion (MC) theory which uses the low rank property of the SCM. Numerical results demonstrate that the new approaches yield superior performance than existing techniques in DOA estimations for multiple and compactly placed sources. |
doi_str_mv | 10.1109/TVT.2021.3105673 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9516950</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9516950</ieee_id><sourcerecordid>2582250727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3</originalsourceid><addsrcrecordid>eNo9kEtPAjEUhRujiYjuTdw0cT3Yx3RKl4ioJCiJgi6bDnMnFJgW20Hjv7eIcXXPTc65jw-hS0p6lBJ1M3ub9RhhtMcpEYXkR6hDFVeZ4kIdow4htJ8pkYtTdBbjKrV5rmgH-bvpAI9iaxvTWu8ifrftEk9sY1uo8Ksz27j0bcS3JqbeOzxutsF_Jv1i3DqbOsBDHwJsfuP4yVewwdbhuVs7_-Xws3c7Z2sfmiRthHN0UptNhIu_2kXz-9Fs-JhNpg_j4WCSLZiibVaRogJjcqBC1rniErjIgdW8EAUvF0KlFxnQkoEUOWem5KUgVFAiCyp5AbyLrg9z07UfO4itXvldcGmlZqLPmCCSyeQiB9ci-BgD1HobEonwrSnRe6w6YdV7rPoPa4pcHSIWAP7tStBCCcJ_APQCctw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2582250727</pqid></control><display><type>article</type><title>DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise</title><source>IEEE Xplore (Online service)</source><creator>Fang, Yunfei ; Zhu, Shengqi ; Zeng, Cao ; Gao, Yongchan ; Li, Shidong</creator><creatorcontrib>Fang, Yunfei ; Zhu, Shengqi ; Zeng, Cao ; Gao, Yongchan ; Li, Shidong</creatorcontrib><description>It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is proposed. The new approach is based on an improved rank-one correlation model for denoising. With an extended virtual aperture array, this technique is able to provide a high-resolution DOA estimation with limited snapshots and is robust to nonuniform noise. In addition, two effective algorithms are also derived to obtain noise-free SCMs. One is to obtain diagonal entries of the noise-free SCM from the off-diagonal entries based on the fact that diagonal entries of SCM across the array are identical. The other is based on matrix completion (MC) theory which uses the low rank property of the SCM. Numerical results demonstrate that the new approaches yield superior performance than existing techniques in DOA estimations for multiple and compactly placed sources.</description><identifier>ISSN: 0018-9545</identifier><identifier>EISSN: 1939-9359</identifier><identifier>DOI: 10.1109/TVT.2021.3105673</identifier><identifier>CODEN: ITVTAB</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; alternating grid optimization (AGO) ; Arrays ; Computational modeling ; Correlation ; Covariance matrices ; Covariance matrix ; Direction of arrival ; Direction of arrival (DOA) ; Direction-of-arrival estimation ; Estimation ; Mathematical analysis ; matrix completion (MC) ; Noise ; Noise reduction ; nonuniform noise ; Optimization ; Robustness (mathematics) ; sparse reconstruction (SR)</subject><ispartof>IEEE transactions on vehicular technology, 2021-10, Vol.70 (10), p.10308-10319</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3</citedby><cites>FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3</cites><orcidid>0000-0003-1446-2081 ; 0000-0003-0522-0582 ; 0000-0001-5842-3629 ; 0000-0002-3119-4472</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9516950$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Fang, Yunfei</creatorcontrib><creatorcontrib>Zhu, Shengqi</creatorcontrib><creatorcontrib>Zeng, Cao</creatorcontrib><creatorcontrib>Gao, Yongchan</creatorcontrib><creatorcontrib>Li, Shidong</creatorcontrib><title>DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise</title><title>IEEE transactions on vehicular technology</title><addtitle>TVT</addtitle><description>It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is proposed. The new approach is based on an improved rank-one correlation model for denoising. With an extended virtual aperture array, this technique is able to provide a high-resolution DOA estimation with limited snapshots and is robust to nonuniform noise. In addition, two effective algorithms are also derived to obtain noise-free SCMs. One is to obtain diagonal entries of the noise-free SCM from the off-diagonal entries based on the fact that diagonal entries of SCM across the array are identical. The other is based on matrix completion (MC) theory which uses the low rank property of the SCM. Numerical results demonstrate that the new approaches yield superior performance than existing techniques in DOA estimations for multiple and compactly placed sources.</description><subject>Algorithms</subject><subject>alternating grid optimization (AGO)</subject><subject>Arrays</subject><subject>Computational modeling</subject><subject>Correlation</subject><subject>Covariance matrices</subject><subject>Covariance matrix</subject><subject>Direction of arrival</subject><subject>Direction of arrival (DOA)</subject><subject>Direction-of-arrival estimation</subject><subject>Estimation</subject><subject>Mathematical analysis</subject><subject>matrix completion (MC)</subject><subject>Noise</subject><subject>Noise reduction</subject><subject>nonuniform noise</subject><subject>Optimization</subject><subject>Robustness (mathematics)</subject><subject>sparse reconstruction (SR)</subject><issn>0018-9545</issn><issn>1939-9359</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><recordid>eNo9kEtPAjEUhRujiYjuTdw0cT3Yx3RKl4ioJCiJgi6bDnMnFJgW20Hjv7eIcXXPTc65jw-hS0p6lBJ1M3ub9RhhtMcpEYXkR6hDFVeZ4kIdow4htJ8pkYtTdBbjKrV5rmgH-bvpAI9iaxvTWu8ifrftEk9sY1uo8Ksz27j0bcS3JqbeOzxutsF_Jv1i3DqbOsBDHwJsfuP4yVewwdbhuVs7_-Xws3c7Z2sfmiRthHN0UptNhIu_2kXz-9Fs-JhNpg_j4WCSLZiibVaRogJjcqBC1rniErjIgdW8EAUvF0KlFxnQkoEUOWem5KUgVFAiCyp5AbyLrg9z07UfO4itXvldcGmlZqLPmCCSyeQiB9ci-BgD1HobEonwrSnRe6w6YdV7rPoPa4pcHSIWAP7tStBCCcJ_APQCctw</recordid><startdate>20211001</startdate><enddate>20211001</enddate><creator>Fang, Yunfei</creator><creator>Zhu, Shengqi</creator><creator>Zeng, Cao</creator><creator>Gao, Yongchan</creator><creator>Li, Shidong</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-1446-2081</orcidid><orcidid>https://orcid.org/0000-0003-0522-0582</orcidid><orcidid>https://orcid.org/0000-0001-5842-3629</orcidid><orcidid>https://orcid.org/0000-0002-3119-4472</orcidid></search><sort><creationdate>20211001</creationdate><title>DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise</title><author>Fang, Yunfei ; Zhu, Shengqi ; Zeng, Cao ; Gao, Yongchan ; Li, Shidong</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Algorithms</topic><topic>alternating grid optimization (AGO)</topic><topic>Arrays</topic><topic>Computational modeling</topic><topic>Correlation</topic><topic>Covariance matrices</topic><topic>Covariance matrix</topic><topic>Direction of arrival</topic><topic>Direction of arrival (DOA)</topic><topic>Direction-of-arrival estimation</topic><topic>Estimation</topic><topic>Mathematical analysis</topic><topic>matrix completion (MC)</topic><topic>Noise</topic><topic>Noise reduction</topic><topic>nonuniform noise</topic><topic>Optimization</topic><topic>Robustness (mathematics)</topic><topic>sparse reconstruction (SR)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fang, Yunfei</creatorcontrib><creatorcontrib>Zhu, Shengqi</creatorcontrib><creatorcontrib>Zeng, Cao</creatorcontrib><creatorcontrib>Gao, Yongchan</creatorcontrib><creatorcontrib>Li, Shidong</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on vehicular technology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fang, Yunfei</au><au>Zhu, Shengqi</au><au>Zeng, Cao</au><au>Gao, Yongchan</au><au>Li, Shidong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise</atitle><jtitle>IEEE transactions on vehicular technology</jtitle><stitle>TVT</stitle><date>2021-10-01</date><risdate>2021</risdate><volume>70</volume><issue>10</issue><spage>10308</spage><epage>10319</epage><pages>10308-10319</pages><issn>0018-9545</issn><eissn>1939-9359</eissn><coden>ITVTAB</coden><abstract>It is well known that classic direction-of-arrival (DOA) estimation techniques yield unsatisfactory performance with limited snapshots in unknown nonuniform noise. In this article, a sparse reconstruction (SR) DOA estimation method combining vectorized and reduced signal covariance matrix (SCM) is proposed. The new approach is based on an improved rank-one correlation model for denoising. With an extended virtual aperture array, this technique is able to provide a high-resolution DOA estimation with limited snapshots and is robust to nonuniform noise. In addition, two effective algorithms are also derived to obtain noise-free SCMs. One is to obtain diagonal entries of the noise-free SCM from the off-diagonal entries based on the fact that diagonal entries of SCM across the array are identical. The other is based on matrix completion (MC) theory which uses the low rank property of the SCM. Numerical results demonstrate that the new approaches yield superior performance than existing techniques in DOA estimations for multiple and compactly placed sources.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TVT.2021.3105673</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0003-1446-2081</orcidid><orcidid>https://orcid.org/0000-0003-0522-0582</orcidid><orcidid>https://orcid.org/0000-0001-5842-3629</orcidid><orcidid>https://orcid.org/0000-0002-3119-4472</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9545 |
ispartof | IEEE transactions on vehicular technology, 2021-10, Vol.70 (10), p.10308-10319 |
issn | 0018-9545 1939-9359 |
language | eng |
recordid | cdi_ieee_primary_9516950 |
source | IEEE Xplore (Online service) |
subjects | Algorithms alternating grid optimization (AGO) Arrays Computational modeling Correlation Covariance matrices Covariance matrix Direction of arrival Direction of arrival (DOA) Direction-of-arrival estimation Estimation Mathematical analysis matrix completion (MC) Noise Noise reduction nonuniform noise Optimization Robustness (mathematics) sparse reconstruction (SR) |
title | DOA Estimations With Limited Snapshots Based on Improved Rank-One Correlation Model in Unknown Nonuniform Noise |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T19%3A39%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DOA%20Estimations%20With%20Limited%20Snapshots%20Based%20on%20Improved%20Rank-One%20Correlation%20Model%20in%20Unknown%20Nonuniform%20Noise&rft.jtitle=IEEE%20transactions%20on%20vehicular%20technology&rft.au=Fang,%20Yunfei&rft.date=2021-10-01&rft.volume=70&rft.issue=10&rft.spage=10308&rft.epage=10319&rft.pages=10308-10319&rft.issn=0018-9545&rft.eissn=1939-9359&rft.coden=ITVTAB&rft_id=info:doi/10.1109/TVT.2021.3105673&rft_dat=%3Cproquest_ieee_%3E2582250727%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-d06deaa4e157f4937e354e2f36563bc595672e1b2e75432ab3b501510761736e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2582250727&rft_id=info:pmid/&rft_ieee_id=9516950&rfr_iscdi=true |