Loading…

Dissecting the High-Frequency Bias in Convolutional Neural Networks

For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen...

Full description

Saved in:
Bibliographic Details
Main Authors: Abello, Antonio A., Hirata, Roberto, Wang, Zhangyang
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3
cites
container_end_page 871
container_issue
container_start_page 863
container_title
container_volume
creator Abello, Antonio A.
Hirata, Roberto
Wang, Zhangyang
description For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen some empirical validation, but most works do not rigorously divide the image frequency spectrum. We present a model to divide the spectrum in disjointed discs based on the distribution of energy and apply simple feature importance procedures to test whether high-frequencies are more important than lower ones. We find evidence that mid or high-level frequencies are disproportionately important for CNNs. The evidence is robust across different datasets and networks. Moreover, we find the diverse effects of the network's attributes, such as architecture and depth, on frequency bias and robustness in general. Code for reproducing our experiments is available at: https://github.com/Abello966/FrequencyBiasExperiments
doi_str_mv 10.1109/CVPRW53098.2021.00096
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9522696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9522696</ieee_id><sourcerecordid>9522696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3</originalsourceid><addsrcrecordid>eNotzN9KwzAUgPEoCM65JxChL9B6ctKkOZda3SYMFfHP5Uizsy1aW21aZW-vqFe_m49PiFMJmZRAZ-XT3f2zVkA2Q0CZAQCZPXEkjdF5bomKfTFCaSAttDSHYhLjy08jwWpNaiTKyxAj-z40m6TfcjIPm2067fhj4MbvkovgYhKapGybz7Ye-tA2rk5ueOh-6b_a7jUei4O1qyNP_h2Lx-nVQzlPF7ez6_J8kXrUuk-tRdCVYa8IvQOfU4EVr7DKyWvtDXKhGAuvwFvDynvSdg0rQofSOuPUWJz8fQMzL9-78Oa63ZI0oiGjvgHg-UuT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dissecting the High-Frequency Bias in Convolutional Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Abello, Antonio A. ; Hirata, Roberto ; Wang, Zhangyang</creator><creatorcontrib>Abello, Antonio A. ; Hirata, Roberto ; Wang, Zhangyang</creatorcontrib><description>For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen some empirical validation, but most works do not rigorously divide the image frequency spectrum. We present a model to divide the spectrum in disjointed discs based on the distribution of energy and apply simple feature importance procedures to test whether high-frequencies are more important than lower ones. We find evidence that mid or high-level frequencies are disproportionately important for CNNs. The evidence is robust across different datasets and networks. Moreover, we find the diverse effects of the network's attributes, such as architecture and depth, on frequency bias and robustness in general. Code for reproducing our experiments is available at: https://github.com/Abello966/FrequencyBiasExperiments</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1665448997</identifier><identifier>EISBN: 9781665448994</identifier><identifier>DOI: 10.1109/CVPRW53098.2021.00096</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Computer vision ; Conferences ; Frequency conversion ; Frequency diversity ; Pattern recognition ; Robustness</subject><ispartof>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, p.863-871</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9522696$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9522696$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abello, Antonio A.</creatorcontrib><creatorcontrib>Hirata, Roberto</creatorcontrib><creatorcontrib>Wang, Zhangyang</creatorcontrib><title>Dissecting the High-Frequency Bias in Convolutional Neural Networks</title><title>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen some empirical validation, but most works do not rigorously divide the image frequency spectrum. We present a model to divide the spectrum in disjointed discs based on the distribution of energy and apply simple feature importance procedures to test whether high-frequencies are more important than lower ones. We find evidence that mid or high-level frequencies are disproportionately important for CNNs. The evidence is robust across different datasets and networks. Moreover, we find the diverse effects of the network's attributes, such as architecture and depth, on frequency bias and robustness in general. Code for reproducing our experiments is available at: https://github.com/Abello966/FrequencyBiasExperiments</description><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Frequency conversion</subject><subject>Frequency diversity</subject><subject>Pattern recognition</subject><subject>Robustness</subject><issn>2160-7516</issn><isbn>1665448997</isbn><isbn>9781665448994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzN9KwzAUgPEoCM65JxChL9B6ctKkOZda3SYMFfHP5Uizsy1aW21aZW-vqFe_m49PiFMJmZRAZ-XT3f2zVkA2Q0CZAQCZPXEkjdF5bomKfTFCaSAttDSHYhLjy08jwWpNaiTKyxAj-z40m6TfcjIPm2067fhj4MbvkovgYhKapGybz7Ye-tA2rk5ueOh-6b_a7jUei4O1qyNP_h2Lx-nVQzlPF7ez6_J8kXrUuk-tRdCVYa8IvQOfU4EVr7DKyWvtDXKhGAuvwFvDynvSdg0rQofSOuPUWJz8fQMzL9-78Oa63ZI0oiGjvgHg-UuT</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Abello, Antonio A.</creator><creator>Hirata, Roberto</creator><creator>Wang, Zhangyang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202106</creationdate><title>Dissecting the High-Frequency Bias in Convolutional Neural Networks</title><author>Abello, Antonio A. ; Hirata, Roberto ; Wang, Zhangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Frequency conversion</topic><topic>Frequency diversity</topic><topic>Pattern recognition</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Abello, Antonio A.</creatorcontrib><creatorcontrib>Hirata, Roberto</creatorcontrib><creatorcontrib>Wang, Zhangyang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abello, Antonio A.</au><au>Hirata, Roberto</au><au>Wang, Zhangyang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dissecting the High-Frequency Bias in Convolutional Neural Networks</atitle><btitle>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2021-06</date><risdate>2021</risdate><spage>863</spage><epage>871</epage><pages>863-871</pages><eissn>2160-7516</eissn><eisbn>1665448997</eisbn><eisbn>9781665448994</eisbn><coden>IEEPAD</coden><abstract>For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen some empirical validation, but most works do not rigorously divide the image frequency spectrum. We present a model to divide the spectrum in disjointed discs based on the distribution of energy and apply simple feature importance procedures to test whether high-frequencies are more important than lower ones. We find evidence that mid or high-level frequencies are disproportionately important for CNNs. The evidence is robust across different datasets and networks. Moreover, we find the diverse effects of the network's attributes, such as architecture and depth, on frequency bias and robustness in general. Code for reproducing our experiments is available at: https://github.com/Abello966/FrequencyBiasExperiments</abstract><pub>IEEE</pub><doi>10.1109/CVPRW53098.2021.00096</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2160-7516
ispartof 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, p.863-871
issn 2160-7516
language eng
recordid cdi_ieee_primary_9522696
source IEEE Xplore All Conference Series
subjects Computer architecture
Computer vision
Conferences
Frequency conversion
Frequency diversity
Pattern recognition
Robustness
title Dissecting the High-Frequency Bias in Convolutional Neural Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dissecting%20the%20High-Frequency%20Bias%20in%20Convolutional%20Neural%20Networks&rft.btitle=2021%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Abello,%20Antonio%20A.&rft.date=2021-06&rft.spage=863&rft.epage=871&rft.pages=863-871&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW53098.2021.00096&rft.eisbn=1665448997&rft.eisbn_list=9781665448994&rft_dat=%3Cieee_CHZPO%3E9522696%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9522696&rfr_iscdi=true