Loading…
Dissecting the High-Frequency Bias in Convolutional Neural Networks
For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3 |
---|---|
cites | |
container_end_page | 871 |
container_issue | |
container_start_page | 863 |
container_title | |
container_volume | |
creator | Abello, Antonio A. Hirata, Roberto Wang, Zhangyang |
description | For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen some empirical validation, but most works do not rigorously divide the image frequency spectrum. We present a model to divide the spectrum in disjointed discs based on the distribution of energy and apply simple feature importance procedures to test whether high-frequencies are more important than lower ones. We find evidence that mid or high-level frequencies are disproportionately important for CNNs. The evidence is robust across different datasets and networks. Moreover, we find the diverse effects of the network's attributes, such as architecture and depth, on frequency bias and robustness in general. Code for reproducing our experiments is available at: https://github.com/Abello966/FrequencyBiasExperiments |
doi_str_mv | 10.1109/CVPRW53098.2021.00096 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9522696</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9522696</ieee_id><sourcerecordid>9522696</sourcerecordid><originalsourceid>FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3</originalsourceid><addsrcrecordid>eNotzN9KwzAUgPEoCM65JxChL9B6ctKkOZda3SYMFfHP5Uizsy1aW21aZW-vqFe_m49PiFMJmZRAZ-XT3f2zVkA2Q0CZAQCZPXEkjdF5bomKfTFCaSAttDSHYhLjy08jwWpNaiTKyxAj-z40m6TfcjIPm2067fhj4MbvkovgYhKapGybz7Ye-tA2rk5ueOh-6b_a7jUei4O1qyNP_h2Lx-nVQzlPF7ez6_J8kXrUuk-tRdCVYa8IvQOfU4EVr7DKyWvtDXKhGAuvwFvDynvSdg0rQofSOuPUWJz8fQMzL9-78Oa63ZI0oiGjvgHg-UuT</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Dissecting the High-Frequency Bias in Convolutional Neural Networks</title><source>IEEE Xplore All Conference Series</source><creator>Abello, Antonio A. ; Hirata, Roberto ; Wang, Zhangyang</creator><creatorcontrib>Abello, Antonio A. ; Hirata, Roberto ; Wang, Zhangyang</creatorcontrib><description>For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen some empirical validation, but most works do not rigorously divide the image frequency spectrum. We present a model to divide the spectrum in disjointed discs based on the distribution of energy and apply simple feature importance procedures to test whether high-frequencies are more important than lower ones. We find evidence that mid or high-level frequencies are disproportionately important for CNNs. The evidence is robust across different datasets and networks. Moreover, we find the diverse effects of the network's attributes, such as architecture and depth, on frequency bias and robustness in general. Code for reproducing our experiments is available at: https://github.com/Abello966/FrequencyBiasExperiments</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1665448997</identifier><identifier>EISBN: 9781665448994</identifier><identifier>DOI: 10.1109/CVPRW53098.2021.00096</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computer architecture ; Computer vision ; Conferences ; Frequency conversion ; Frequency diversity ; Pattern recognition ; Robustness</subject><ispartof>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, p.863-871</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9522696$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9522696$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Abello, Antonio A.</creatorcontrib><creatorcontrib>Hirata, Roberto</creatorcontrib><creatorcontrib>Wang, Zhangyang</creatorcontrib><title>Dissecting the High-Frequency Bias in Convolutional Neural Networks</title><title>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen some empirical validation, but most works do not rigorously divide the image frequency spectrum. We present a model to divide the spectrum in disjointed discs based on the distribution of energy and apply simple feature importance procedures to test whether high-frequencies are more important than lower ones. We find evidence that mid or high-level frequencies are disproportionately important for CNNs. The evidence is robust across different datasets and networks. Moreover, we find the diverse effects of the network's attributes, such as architecture and depth, on frequency bias and robustness in general. Code for reproducing our experiments is available at: https://github.com/Abello966/FrequencyBiasExperiments</description><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Frequency conversion</subject><subject>Frequency diversity</subject><subject>Pattern recognition</subject><subject>Robustness</subject><issn>2160-7516</issn><isbn>1665448997</isbn><isbn>9781665448994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzN9KwzAUgPEoCM65JxChL9B6ctKkOZda3SYMFfHP5Uizsy1aW21aZW-vqFe_m49PiFMJmZRAZ-XT3f2zVkA2Q0CZAQCZPXEkjdF5bomKfTFCaSAttDSHYhLjy08jwWpNaiTKyxAj-z40m6TfcjIPm2067fhj4MbvkovgYhKapGybz7Ye-tA2rk5ueOh-6b_a7jUei4O1qyNP_h2Lx-nVQzlPF7ez6_J8kXrUuk-tRdCVYa8IvQOfU4EVr7DKyWvtDXKhGAuvwFvDynvSdg0rQofSOuPUWJz8fQMzL9-78Oa63ZI0oiGjvgHg-UuT</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Abello, Antonio A.</creator><creator>Hirata, Roberto</creator><creator>Wang, Zhangyang</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202106</creationdate><title>Dissecting the High-Frequency Bias in Convolutional Neural Networks</title><author>Abello, Antonio A. ; Hirata, Roberto ; Wang, Zhangyang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Frequency conversion</topic><topic>Frequency diversity</topic><topic>Pattern recognition</topic><topic>Robustness</topic><toplevel>online_resources</toplevel><creatorcontrib>Abello, Antonio A.</creatorcontrib><creatorcontrib>Hirata, Roberto</creatorcontrib><creatorcontrib>Wang, Zhangyang</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Abello, Antonio A.</au><au>Hirata, Roberto</au><au>Wang, Zhangyang</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Dissecting the High-Frequency Bias in Convolutional Neural Networks</atitle><btitle>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2021-06</date><risdate>2021</risdate><spage>863</spage><epage>871</epage><pages>863-871</pages><eissn>2160-7516</eissn><eisbn>1665448997</eisbn><eisbn>9781665448994</eisbn><coden>IEEPAD</coden><abstract>For convolutional neural networks (CNNs), a common hypothesis that explains both their generalization capability and their characteristic brittleness is that these models are implicitly regularized to rely on imperceptible high-frequency patterns, more than humans would do. This hypothesis has seen some empirical validation, but most works do not rigorously divide the image frequency spectrum. We present a model to divide the spectrum in disjointed discs based on the distribution of energy and apply simple feature importance procedures to test whether high-frequencies are more important than lower ones. We find evidence that mid or high-level frequencies are disproportionately important for CNNs. The evidence is robust across different datasets and networks. Moreover, we find the diverse effects of the network's attributes, such as architecture and depth, on frequency bias and robustness in general. Code for reproducing our experiments is available at: https://github.com/Abello966/FrequencyBiasExperiments</abstract><pub>IEEE</pub><doi>10.1109/CVPRW53098.2021.00096</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2160-7516 |
ispartof | 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, p.863-871 |
issn | 2160-7516 |
language | eng |
recordid | cdi_ieee_primary_9522696 |
source | IEEE Xplore All Conference Series |
subjects | Computer architecture Computer vision Conferences Frequency conversion Frequency diversity Pattern recognition Robustness |
title | Dissecting the High-Frequency Bias in Convolutional Neural Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T08%3A50%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Dissecting%20the%20High-Frequency%20Bias%20in%20Convolutional%20Neural%20Networks&rft.btitle=2021%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Abello,%20Antonio%20A.&rft.date=2021-06&rft.spage=863&rft.epage=871&rft.pages=863-871&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW53098.2021.00096&rft.eisbn=1665448997&rft.eisbn_list=9781665448994&rft_dat=%3Cieee_CHZPO%3E9522696%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c255t-88205b6ec392ca0c4972bed2b49c55c62e73e27c30c86e3cc958f0d92a218a6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9522696&rfr_iscdi=true |