Loading…
Sketch-QNet: A Quadruplet ConvNet for Color Sketch-based Image Retrieval
Architectures based on siamese networks with triplet loss have shown outstanding performance on the image-based similarity search problem. This approach attempts to discriminate between positive (relevant) and negative (irrelevant) items. However, it undergoes a critical weakness. Given a query, it...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Architectures based on siamese networks with triplet loss have shown outstanding performance on the image-based similarity search problem. This approach attempts to discriminate between positive (relevant) and negative (irrelevant) items. However, it undergoes a critical weakness. Given a query, it cannot discriminate weakly relevant items, for instance, items of the same type but different color or texture as the given query, which could be a serious limitation for many real-world search applications. Therefore, in this work, we present a quadruplet-based architecture that overcomes the aforementioned weakness. Moreover, we present an instance of this quadruplet network, which we call Sketch-QNet, to deal with the color sketch-based image retrieval (CSBIR) problem, achieving new state-of- the-art results. |
---|---|
ISSN: | 2160-7516 |
DOI: | 10.1109/CVPRW53098.2021.00242 |