Loading…

Filtering Empty Camera Trap Images in Embedded Systems

Monitoring wildlife through camera traps produces a massive amount of images, whose a significant portion does not contain animals, being later discarded. Embedding deep learning models to identify animals and filter these images directly in those devices brings advantages such as savings in the sto...

Full description

Saved in:
Bibliographic Details
Main Authors: Cunha, Fagner, dos Santos, Eulanda M., Barreto, Raimundo, Colonna, Juan G.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 2446
container_issue
container_start_page 2438
container_title
container_volume
creator Cunha, Fagner
dos Santos, Eulanda M.
Barreto, Raimundo
Colonna, Juan G.
description Monitoring wildlife through camera traps produces a massive amount of images, whose a significant portion does not contain animals, being later discarded. Embedding deep learning models to identify animals and filter these images directly in those devices brings advantages such as savings in the storage and transmission of data, usually resource-constrained in this type of equipment. In this work, we present a comparative study on animal recognition models to analyze the trade-off between precision and inference latency on edge devices. To accomplish this objective, we investigate classifiers and object detectors of various input resolutions and optimize them using quantization and reducing the number of model filters. The confidence threshold of each model was adjusted to obtain 96% recall for the nonempty class, since instances from the empty class are expected to be discarded. The experiments show that, when using the same set of images for training, detectors achieve superior performance, eliminating at least 10% more empty images than classifiers with comparable latencies. Considering the high cost of generating labels for the detection problem, when there is a massive number of images labeled for classification (about one million instances, ten times more than those available for detection), classifiers are able to reach results comparable to detectors but with half latency. 1
doi_str_mv 10.1109/CVPRW53098.2021.00276
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9522940</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9522940</ieee_id><sourcerecordid>9522940</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-e4de066ae257fcf9364f49319f8ddf766551ae1cc94670ea66be9c2db7bd2b673</originalsourceid><addsrcrecordid>eNotjstKw0AUQEdBsNZ-gQjzA6l3XndylxJaWygoWnVZJpk7JdKUkMkmf29BV2dx4HCEeFSwVAroqfp6e_92BqhcatBqCaA9Xok7heisLYn8tZhphVB4p_BWLHL-AQAFpXNkZgLX7WnkoT0f5arrx0lWoeMhyP0QerntwpGzbM8XV3OMHOXHlEfu8r24SeGUefHPufhcr_bVpti9vmyr513RajBjwTYyIAbWzqcmkUGbLBlFqYwx-cujU4FV05BFDxwQa6ZGx9rXUdfozVw8_HVbZj70Q9uFYTqQ05osmF9CiEa3</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Filtering Empty Camera Trap Images in Embedded Systems</title><source>IEEE Xplore All Conference Series</source><creator>Cunha, Fagner ; dos Santos, Eulanda M. ; Barreto, Raimundo ; Colonna, Juan G.</creator><creatorcontrib>Cunha, Fagner ; dos Santos, Eulanda M. ; Barreto, Raimundo ; Colonna, Juan G.</creatorcontrib><description>Monitoring wildlife through camera traps produces a massive amount of images, whose a significant portion does not contain animals, being later discarded. Embedding deep learning models to identify animals and filter these images directly in those devices brings advantages such as savings in the storage and transmission of data, usually resource-constrained in this type of equipment. In this work, we present a comparative study on animal recognition models to analyze the trade-off between precision and inference latency on edge devices. To accomplish this objective, we investigate classifiers and object detectors of various input resolutions and optimize them using quantization and reducing the number of model filters. The confidence threshold of each model was adjusted to obtain 96% recall for the nonempty class, since instances from the empty class are expected to be discarded. The experiments show that, when using the same set of images for training, detectors achieve superior performance, eliminating at least 10% more empty images than classifiers with comparable latencies. Considering the high cost of generating labels for the detection problem, when there is a massive number of images labeled for classification (about one million instances, ten times more than those available for detection), classifiers are able to reach results comparable to detectors but with half latency. 1</description><identifier>EISSN: 2160-7516</identifier><identifier>EISBN: 1665448997</identifier><identifier>EISBN: 9781665448994</identifier><identifier>DOI: 10.1109/CVPRW53098.2021.00276</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Detectors ; Image edge detection ; Performance evaluation ; Quantization (signal) ; Training ; Wildlife</subject><ispartof>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, p.2438-2446</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9522940$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9522940$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Cunha, Fagner</creatorcontrib><creatorcontrib>dos Santos, Eulanda M.</creatorcontrib><creatorcontrib>Barreto, Raimundo</creatorcontrib><creatorcontrib>Colonna, Juan G.</creatorcontrib><title>Filtering Empty Camera Trap Images in Embedded Systems</title><title>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</title><addtitle>CVPRW</addtitle><description>Monitoring wildlife through camera traps produces a massive amount of images, whose a significant portion does not contain animals, being later discarded. Embedding deep learning models to identify animals and filter these images directly in those devices brings advantages such as savings in the storage and transmission of data, usually resource-constrained in this type of equipment. In this work, we present a comparative study on animal recognition models to analyze the trade-off between precision and inference latency on edge devices. To accomplish this objective, we investigate classifiers and object detectors of various input resolutions and optimize them using quantization and reducing the number of model filters. The confidence threshold of each model was adjusted to obtain 96% recall for the nonempty class, since instances from the empty class are expected to be discarded. The experiments show that, when using the same set of images for training, detectors achieve superior performance, eliminating at least 10% more empty images than classifiers with comparable latencies. Considering the high cost of generating labels for the detection problem, when there is a massive number of images labeled for classification (about one million instances, ten times more than those available for detection), classifiers are able to reach results comparable to detectors but with half latency. 1</description><subject>Computational modeling</subject><subject>Detectors</subject><subject>Image edge detection</subject><subject>Performance evaluation</subject><subject>Quantization (signal)</subject><subject>Training</subject><subject>Wildlife</subject><issn>2160-7516</issn><isbn>1665448997</isbn><isbn>9781665448994</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjstKw0AUQEdBsNZ-gQjzA6l3XndylxJaWygoWnVZJpk7JdKUkMkmf29BV2dx4HCEeFSwVAroqfp6e_92BqhcatBqCaA9Xok7heisLYn8tZhphVB4p_BWLHL-AQAFpXNkZgLX7WnkoT0f5arrx0lWoeMhyP0QerntwpGzbM8XV3OMHOXHlEfu8r24SeGUefHPufhcr_bVpti9vmyr513RajBjwTYyIAbWzqcmkUGbLBlFqYwx-cujU4FV05BFDxwQa6ZGx9rXUdfozVw8_HVbZj70Q9uFYTqQ05osmF9CiEa3</recordid><startdate>202106</startdate><enddate>202106</enddate><creator>Cunha, Fagner</creator><creator>dos Santos, Eulanda M.</creator><creator>Barreto, Raimundo</creator><creator>Colonna, Juan G.</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202106</creationdate><title>Filtering Empty Camera Trap Images in Embedded Systems</title><author>Cunha, Fagner ; dos Santos, Eulanda M. ; Barreto, Raimundo ; Colonna, Juan G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-e4de066ae257fcf9364f49319f8ddf766551ae1cc94670ea66be9c2db7bd2b673</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational modeling</topic><topic>Detectors</topic><topic>Image edge detection</topic><topic>Performance evaluation</topic><topic>Quantization (signal)</topic><topic>Training</topic><topic>Wildlife</topic><toplevel>online_resources</toplevel><creatorcontrib>Cunha, Fagner</creatorcontrib><creatorcontrib>dos Santos, Eulanda M.</creatorcontrib><creatorcontrib>Barreto, Raimundo</creatorcontrib><creatorcontrib>Colonna, Juan G.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cunha, Fagner</au><au>dos Santos, Eulanda M.</au><au>Barreto, Raimundo</au><au>Colonna, Juan G.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Filtering Empty Camera Trap Images in Embedded Systems</atitle><btitle>2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW)</btitle><stitle>CVPRW</stitle><date>2021-06</date><risdate>2021</risdate><spage>2438</spage><epage>2446</epage><pages>2438-2446</pages><eissn>2160-7516</eissn><eisbn>1665448997</eisbn><eisbn>9781665448994</eisbn><coden>IEEPAD</coden><abstract>Monitoring wildlife through camera traps produces a massive amount of images, whose a significant portion does not contain animals, being later discarded. Embedding deep learning models to identify animals and filter these images directly in those devices brings advantages such as savings in the storage and transmission of data, usually resource-constrained in this type of equipment. In this work, we present a comparative study on animal recognition models to analyze the trade-off between precision and inference latency on edge devices. To accomplish this objective, we investigate classifiers and object detectors of various input resolutions and optimize them using quantization and reducing the number of model filters. The confidence threshold of each model was adjusted to obtain 96% recall for the nonempty class, since instances from the empty class are expected to be discarded. The experiments show that, when using the same set of images for training, detectors achieve superior performance, eliminating at least 10% more empty images than classifiers with comparable latencies. Considering the high cost of generating labels for the detection problem, when there is a massive number of images labeled for classification (about one million instances, ten times more than those available for detection), classifiers are able to reach results comparable to detectors but with half latency. 1</abstract><pub>IEEE</pub><doi>10.1109/CVPRW53098.2021.00276</doi><tpages>9</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2160-7516
ispartof 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2021, p.2438-2446
issn 2160-7516
language eng
recordid cdi_ieee_primary_9522940
source IEEE Xplore All Conference Series
subjects Computational modeling
Detectors
Image edge detection
Performance evaluation
Quantization (signal)
Training
Wildlife
title Filtering Empty Camera Trap Images in Embedded Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T22%3A09%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Filtering%20Empty%20Camera%20Trap%20Images%20in%20Embedded%20Systems&rft.btitle=2021%20IEEE/CVF%20Conference%20on%20Computer%20Vision%20and%20Pattern%20Recognition%20Workshops%20(CVPRW)&rft.au=Cunha,%20Fagner&rft.date=2021-06&rft.spage=2438&rft.epage=2446&rft.pages=2438-2446&rft.eissn=2160-7516&rft.coden=IEEPAD&rft_id=info:doi/10.1109/CVPRW53098.2021.00276&rft.eisbn=1665448997&rft.eisbn_list=9781665448994&rft_dat=%3Cieee_CHZPO%3E9522940%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-e4de066ae257fcf9364f49319f8ddf766551ae1cc94670ea66be9c2db7bd2b673%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9522940&rfr_iscdi=true