Loading…
Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms
Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an onlin...
Saved in:
Published in: | IEEE/ACM transactions on networking 2022-02, Vol.30 (1), p.18-31 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003 |
container_end_page | 31 |
container_issue | 1 |
container_start_page | 18 |
container_title | IEEE/ACM transactions on networking |
container_volume | 30 |
creator | Bura, Archana Rengarajan, Desik Kalathil, Dileep Shakkottai, Srinivas Chamberland, Jean-Francois |
description | Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the "regret" in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this "caching bandit" using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations. |
doi_str_mv | 10.1109/TNET.2021.3105880 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9523607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9523607</ieee_id><sourcerecordid>2629133014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k9lkN95KaVWoClLPIc0m7ZZ2tybbQ_-92w96mpfheYfhYewRYYAI6mX2NZ4NOHAcEIIoCrhiPRSiSLmQ8rrLICmVUvFbdhfjCgAJuOyxz6kzoa7qRdI2ycjYpUtMXR7TeXkEXpMftwiuTYa1We9jFZPGX6DhetGEql1u4j278WYd3cN59tnvZDwbvafT77eP0XCaWiLZps4iCQFGWMqUzJ1XZKgolfMSDaHPFOWlKlVuhTAWC-O9z1U2n3codwDUZ8-nu9vQ_O1cbPWq2YXutai55AqJALOOwhNlQxNjcF5vQ7UxYa8R9MGaPljTB2v6bK3rPJ06lXPuwivBSUJO_4p7Z34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629133014</pqid></control><display><type>article</type><title>Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Bura, Archana ; Rengarajan, Desik ; Kalathil, Dileep ; Shakkottai, Srinivas ; Chamberland, Jean-Francois</creator><creatorcontrib>Bura, Archana ; Rengarajan, Desik ; Kalathil, Dileep ; Shakkottai, Srinivas ; Chamberland, Jean-Francois</creatorcontrib><description>Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the "regret" in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this "caching bandit" using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2021.3105880</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Caching ; Caching algorithms ; Distance learning ; IEEE transactions ; Libraries ; Machine learning ; Measurement ; multi armed bandits ; Multi-armed bandit problems ; online learning ; Performance analysis ; Performance measurement ; Routing ; Servers ; Time-frequency analysis</subject><ispartof>IEEE/ACM transactions on networking, 2022-02, Vol.30 (1), p.18-31</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003</citedby><cites>FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003</cites><orcidid>0000-0002-5882-6433 ; 0000-0002-8538-6023 ; 0000-0001-7897-2473 ; 0000-0002-2983-9884 ; 0000-0001-7968-5185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9523607$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Bura, Archana</creatorcontrib><creatorcontrib>Rengarajan, Desik</creatorcontrib><creatorcontrib>Kalathil, Dileep</creatorcontrib><creatorcontrib>Shakkottai, Srinivas</creatorcontrib><creatorcontrib>Chamberland, Jean-Francois</creatorcontrib><title>Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the "regret" in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this "caching bandit" using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations.</description><subject>Algorithms</subject><subject>Caching</subject><subject>Caching algorithms</subject><subject>Distance learning</subject><subject>IEEE transactions</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>multi armed bandits</subject><subject>Multi-armed bandit problems</subject><subject>online learning</subject><subject>Performance analysis</subject><subject>Performance measurement</subject><subject>Routing</subject><subject>Servers</subject><subject>Time-frequency analysis</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k9lkN95KaVWoClLPIc0m7ZZ2tybbQ_-92w96mpfheYfhYewRYYAI6mX2NZ4NOHAcEIIoCrhiPRSiSLmQ8rrLICmVUvFbdhfjCgAJuOyxz6kzoa7qRdI2ycjYpUtMXR7TeXkEXpMftwiuTYa1We9jFZPGX6DhetGEql1u4j278WYd3cN59tnvZDwbvafT77eP0XCaWiLZps4iCQFGWMqUzJ1XZKgolfMSDaHPFOWlKlVuhTAWC-O9z1U2n3codwDUZ8-nu9vQ_O1cbPWq2YXutai55AqJALOOwhNlQxNjcF5vQ7UxYa8R9MGaPljTB2v6bK3rPJ06lXPuwivBSUJO_4p7Z34</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Bura, Archana</creator><creator>Rengarajan, Desik</creator><creator>Kalathil, Dileep</creator><creator>Shakkottai, Srinivas</creator><creator>Chamberland, Jean-Francois</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5882-6433</orcidid><orcidid>https://orcid.org/0000-0002-8538-6023</orcidid><orcidid>https://orcid.org/0000-0001-7897-2473</orcidid><orcidid>https://orcid.org/0000-0002-2983-9884</orcidid><orcidid>https://orcid.org/0000-0001-7968-5185</orcidid></search><sort><creationdate>202202</creationdate><title>Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms</title><author>Bura, Archana ; Rengarajan, Desik ; Kalathil, Dileep ; Shakkottai, Srinivas ; Chamberland, Jean-Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Caching</topic><topic>Caching algorithms</topic><topic>Distance learning</topic><topic>IEEE transactions</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>multi armed bandits</topic><topic>Multi-armed bandit problems</topic><topic>online learning</topic><topic>Performance analysis</topic><topic>Performance measurement</topic><topic>Routing</topic><topic>Servers</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bura, Archana</creatorcontrib><creatorcontrib>Rengarajan, Desik</creatorcontrib><creatorcontrib>Kalathil, Dileep</creatorcontrib><creatorcontrib>Shakkottai, Srinivas</creatorcontrib><creatorcontrib>Chamberland, Jean-Francois</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bura, Archana</au><au>Rengarajan, Desik</au><au>Kalathil, Dileep</au><au>Shakkottai, Srinivas</au><au>Chamberland, Jean-Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2022-02</date><risdate>2022</risdate><volume>30</volume><issue>1</issue><spage>18</spage><epage>31</epage><pages>18-31</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the "regret" in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this "caching bandit" using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2021.3105880</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5882-6433</orcidid><orcidid>https://orcid.org/0000-0002-8538-6023</orcidid><orcidid>https://orcid.org/0000-0001-7897-2473</orcidid><orcidid>https://orcid.org/0000-0002-2983-9884</orcidid><orcidid>https://orcid.org/0000-0001-7968-5185</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1063-6692 |
ispartof | IEEE/ACM transactions on networking, 2022-02, Vol.30 (1), p.18-31 |
issn | 1063-6692 1558-2566 |
language | eng |
recordid | cdi_ieee_primary_9523607 |
source | IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list) |
subjects | Algorithms Caching Caching algorithms Distance learning IEEE transactions Libraries Machine learning Measurement multi armed bandits Multi-armed bandit problems online learning Performance analysis Performance measurement Routing Servers Time-frequency analysis |
title | Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20Cache%20and%20Caching%20to%20Learn:%20Regret%20Analysis%20of%20Caching%20Algorithms&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Bura,%20Archana&rft.date=2022-02&rft.volume=30&rft.issue=1&rft.spage=18&rft.epage=31&rft.pages=18-31&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2021.3105880&rft_dat=%3Cproquest_ieee_%3E2629133014%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629133014&rft_id=info:pmid/&rft_ieee_id=9523607&rfr_iscdi=true |