Loading…

Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms

Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an onlin...

Full description

Saved in:
Bibliographic Details
Published in:IEEE/ACM transactions on networking 2022-02, Vol.30 (1), p.18-31
Main Authors: Bura, Archana, Rengarajan, Desik, Kalathil, Dileep, Shakkottai, Srinivas, Chamberland, Jean-Francois
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003
cites cdi_FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003
container_end_page 31
container_issue 1
container_start_page 18
container_title IEEE/ACM transactions on networking
container_volume 30
creator Bura, Archana
Rengarajan, Desik
Kalathil, Dileep
Shakkottai, Srinivas
Chamberland, Jean-Francois
description Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the "regret" in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this "caching bandit" using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations.
doi_str_mv 10.1109/TNET.2021.3105880
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9523607</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9523607</ieee_id><sourcerecordid>2629133014</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003</originalsourceid><addsrcrecordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k9lkN95KaVWoClLPIc0m7ZZ2tybbQ_-92w96mpfheYfhYewRYYAI6mX2NZ4NOHAcEIIoCrhiPRSiSLmQ8rrLICmVUvFbdhfjCgAJuOyxz6kzoa7qRdI2ycjYpUtMXR7TeXkEXpMftwiuTYa1We9jFZPGX6DhetGEql1u4j278WYd3cN59tnvZDwbvafT77eP0XCaWiLZps4iCQFGWMqUzJ1XZKgolfMSDaHPFOWlKlVuhTAWC-O9z1U2n3codwDUZ8-nu9vQ_O1cbPWq2YXutai55AqJALOOwhNlQxNjcF5vQ7UxYa8R9MGaPljTB2v6bK3rPJ06lXPuwivBSUJO_4p7Z34</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2629133014</pqid></control><display><type>article</type><title>Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms</title><source>IEEE Electronic Library (IEL) Journals</source><source>Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)</source><creator>Bura, Archana ; Rengarajan, Desik ; Kalathil, Dileep ; Shakkottai, Srinivas ; Chamberland, Jean-Francois</creator><creatorcontrib>Bura, Archana ; Rengarajan, Desik ; Kalathil, Dileep ; Shakkottai, Srinivas ; Chamberland, Jean-Francois</creatorcontrib><description>Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the "regret" in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this "caching bandit" using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations.</description><identifier>ISSN: 1063-6692</identifier><identifier>EISSN: 1558-2566</identifier><identifier>DOI: 10.1109/TNET.2021.3105880</identifier><identifier>CODEN: IEANEP</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Caching ; Caching algorithms ; Distance learning ; IEEE transactions ; Libraries ; Machine learning ; Measurement ; multi armed bandits ; Multi-armed bandit problems ; online learning ; Performance analysis ; Performance measurement ; Routing ; Servers ; Time-frequency analysis</subject><ispartof>IEEE/ACM transactions on networking, 2022-02, Vol.30 (1), p.18-31</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003</citedby><cites>FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003</cites><orcidid>0000-0002-5882-6433 ; 0000-0002-8538-6023 ; 0000-0001-7897-2473 ; 0000-0002-2983-9884 ; 0000-0001-7968-5185</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9523607$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Bura, Archana</creatorcontrib><creatorcontrib>Rengarajan, Desik</creatorcontrib><creatorcontrib>Kalathil, Dileep</creatorcontrib><creatorcontrib>Shakkottai, Srinivas</creatorcontrib><creatorcontrib>Chamberland, Jean-Francois</creatorcontrib><title>Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms</title><title>IEEE/ACM transactions on networking</title><addtitle>TNET</addtitle><description>Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the "regret" in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this "caching bandit" using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations.</description><subject>Algorithms</subject><subject>Caching</subject><subject>Caching algorithms</subject><subject>Distance learning</subject><subject>IEEE transactions</subject><subject>Libraries</subject><subject>Machine learning</subject><subject>Measurement</subject><subject>multi armed bandits</subject><subject>Multi-armed bandit problems</subject><subject>online learning</subject><subject>Performance analysis</subject><subject>Performance measurement</subject><subject>Routing</subject><subject>Servers</subject><subject>Time-frequency analysis</subject><issn>1063-6692</issn><issn>1558-2566</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kE1LAzEQhoMoWKs_QLwseN46k9lkN95KaVWoClLPIc0m7ZZ2tybbQ_-92w96mpfheYfhYewRYYAI6mX2NZ4NOHAcEIIoCrhiPRSiSLmQ8rrLICmVUvFbdhfjCgAJuOyxz6kzoa7qRdI2ycjYpUtMXR7TeXkEXpMftwiuTYa1We9jFZPGX6DhetGEql1u4j278WYd3cN59tnvZDwbvafT77eP0XCaWiLZps4iCQFGWMqUzJ1XZKgolfMSDaHPFOWlKlVuhTAWC-O9z1U2n3codwDUZ8-nu9vQ_O1cbPWq2YXutai55AqJALOOwhNlQxNjcF5vQ7UxYa8R9MGaPljTB2v6bK3rPJ06lXPuwivBSUJO_4p7Z34</recordid><startdate>202202</startdate><enddate>202202</enddate><creator>Bura, Archana</creator><creator>Rengarajan, Desik</creator><creator>Kalathil, Dileep</creator><creator>Shakkottai, Srinivas</creator><creator>Chamberland, Jean-Francois</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0002-5882-6433</orcidid><orcidid>https://orcid.org/0000-0002-8538-6023</orcidid><orcidid>https://orcid.org/0000-0001-7897-2473</orcidid><orcidid>https://orcid.org/0000-0002-2983-9884</orcidid><orcidid>https://orcid.org/0000-0001-7968-5185</orcidid></search><sort><creationdate>202202</creationdate><title>Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms</title><author>Bura, Archana ; Rengarajan, Desik ; Kalathil, Dileep ; Shakkottai, Srinivas ; Chamberland, Jean-Francois</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Algorithms</topic><topic>Caching</topic><topic>Caching algorithms</topic><topic>Distance learning</topic><topic>IEEE transactions</topic><topic>Libraries</topic><topic>Machine learning</topic><topic>Measurement</topic><topic>multi armed bandits</topic><topic>Multi-armed bandit problems</topic><topic>online learning</topic><topic>Performance analysis</topic><topic>Performance measurement</topic><topic>Routing</topic><topic>Servers</topic><topic>Time-frequency analysis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bura, Archana</creatorcontrib><creatorcontrib>Rengarajan, Desik</creatorcontrib><creatorcontrib>Kalathil, Dileep</creatorcontrib><creatorcontrib>Shakkottai, Srinivas</creatorcontrib><creatorcontrib>Chamberland, Jean-Francois</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE/ACM transactions on networking</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bura, Archana</au><au>Rengarajan, Desik</au><au>Kalathil, Dileep</au><au>Shakkottai, Srinivas</au><au>Chamberland, Jean-Francois</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms</atitle><jtitle>IEEE/ACM transactions on networking</jtitle><stitle>TNET</stitle><date>2022-02</date><risdate>2022</risdate><volume>30</volume><issue>1</issue><spage>18</spage><epage>31</epage><pages>18-31</pages><issn>1063-6692</issn><eissn>1558-2566</eissn><coden>IEANEP</coden><abstract>Crucial performance metrics of a caching algorithm include its ability to quickly and accurately learn a popularity distribution of requests. However, a majority of work on analytical performance analysis focuses on hit probability after an asymptotically large time has elapsed. We consider an online learning viewpoint, and characterize the "regret" in terms of the finite time difference between the hits achieved by a candidate caching algorithm with respect to a genie-aided scheme that places the most popular items in the cache. We first consider the Full Observation regime wherein all requests are seen by the cache. We show that the Least Frequently Used (LFU) algorithm is able to achieve order optimal regret, which is matched by an efficient counting algorithm design that we call LFU-Lite. We then consider the Partial Observation regime wherein only requests for items currently cached are seen by the cache, making it similar to an online learning problem related to the multi-armed bandit problem. We show how approaching this "caching bandit" using traditional approaches yields either high complexity or regret, but a simple algorithm design that exploits the structure of the distribution can ensure order optimal regret. We conclude by illustrating our insights using numerical simulations.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TNET.2021.3105880</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0002-5882-6433</orcidid><orcidid>https://orcid.org/0000-0002-8538-6023</orcidid><orcidid>https://orcid.org/0000-0001-7897-2473</orcidid><orcidid>https://orcid.org/0000-0002-2983-9884</orcidid><orcidid>https://orcid.org/0000-0001-7968-5185</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1063-6692
ispartof IEEE/ACM transactions on networking, 2022-02, Vol.30 (1), p.18-31
issn 1063-6692
1558-2566
language eng
recordid cdi_ieee_primary_9523607
source IEEE Electronic Library (IEL) Journals; Association for Computing Machinery:Jisc Collections:ACM OPEN Journals 2023-2025 (reading list)
subjects Algorithms
Caching
Caching algorithms
Distance learning
IEEE transactions
Libraries
Machine learning
Measurement
multi armed bandits
Multi-armed bandit problems
online learning
Performance analysis
Performance measurement
Routing
Servers
Time-frequency analysis
title Learning to Cache and Caching to Learn: Regret Analysis of Caching Algorithms
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T00%3A31%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Learning%20to%20Cache%20and%20Caching%20to%20Learn:%20Regret%20Analysis%20of%20Caching%20Algorithms&rft.jtitle=IEEE/ACM%20transactions%20on%20networking&rft.au=Bura,%20Archana&rft.date=2022-02&rft.volume=30&rft.issue=1&rft.spage=18&rft.epage=31&rft.pages=18-31&rft.issn=1063-6692&rft.eissn=1558-2566&rft.coden=IEANEP&rft_id=info:doi/10.1109/TNET.2021.3105880&rft_dat=%3Cproquest_ieee_%3E2629133014%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-ec13550a5c34967ef93a38d9ef61a31f4937d9d97c55ac18afff794bb7ef2e003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2629133014&rft_id=info:pmid/&rft_ieee_id=9523607&rfr_iscdi=true