Loading…
Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery
In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down...
Saved in:
Published in: | IEEE transactions on medical robotics and bionics 2021-11, Vol.3 (4), p.888-899 |
---|---|
Main Authors: | , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3 |
container_end_page | 899 |
container_issue | 4 |
container_start_page | 888 |
container_title | IEEE transactions on medical robotics and bionics |
container_volume | 3 |
creator | Falezza, Fabio Piccinelli, Nicola De Rossi, Giacomo Roberti, Andrea Kronreif, Gernot Setti, Francesco Fiorini, Paolo Muradore, Riccardo |
description | In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down approach based on knowledge representation techniques. We consider medical knowledge about the procedure and sensing of the environment in two concurrent regions of the statecharts to facilitate re-usability and adaptability of the modules. Our approach allows producing a well defined procedural model exploiting the hierarchy capability of the statecharts, while machine learning modules act as soft sensors to trigger state transitions. Integrating data driven and prior knowledge techniques provides a robust, modular, flexible and re-configurable methodology to define a surgical procedure which is comprehensible by both humans and machines. We validate our approach on the three surgical phases of a Robot-Assisted Radical Prostatectomy (RARP) that directly involve the assistant surgeon: bladder mobilization, bladder neck transection, and vesicourethral anastomosis, all performed on synthetic manikins. |
doi_str_mv | 10.1109/TMRB.2021.3110676 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9530457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9530457</ieee_id><sourcerecordid>2599203792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3</originalsourceid><addsrcrecordid>eNpNUNtKAzEQDaJgqf0A8WXB59ZcNol5rMUbtCi9PIfs7Gzd0jY12X3o35u1RYSBuZ1zZjiE3DI6Yoyah-Vs_jTilLORSL3S6oL0uNRqKNLw8l99TQYxbihNUEm1UD2ymvkSt_V-nfkqW7RhXYPbZp_BA5ZtwJitYrdcNK5B-HKhiVnlQ7bAXT0ct43f-51vYzb3hW9q-FXAcLwhV5XbRhycc5-sXp6Xk7fh9OP1fTKeDkEI1aSXJBWKoi5LJ-FRaiY5FDx3BnJIoYqicGVOFSvASCgBUBlWykqDxEKi6JP7k-4h-O8WY2M3vg37dNJyaQynQhueUOyEguBjDFjZQ6h3Lhwto7Yz0HYG2s5AezYwce5OnBoR__BGCppLLX4AOAJtNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599203792</pqid></control><display><type>article</type><title>Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Falezza, Fabio ; Piccinelli, Nicola ; De Rossi, Giacomo ; Roberti, Andrea ; Kronreif, Gernot ; Setti, Francesco ; Fiorini, Paolo ; Muradore, Riccardo</creator><creatorcontrib>Falezza, Fabio ; Piccinelli, Nicola ; De Rossi, Giacomo ; Roberti, Andrea ; Kronreif, Gernot ; Setti, Francesco ; Fiorini, Paolo ; Muradore, Riccardo</creatorcontrib><description>In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down approach based on knowledge representation techniques. We consider medical knowledge about the procedure and sensing of the environment in two concurrent regions of the statecharts to facilitate re-usability and adaptability of the modules. Our approach allows producing a well defined procedural model exploiting the hierarchy capability of the statecharts, while machine learning modules act as soft sensors to trigger state transitions. Integrating data driven and prior knowledge techniques provides a robust, modular, flexible and re-configurable methodology to define a surgical procedure which is comprehensible by both humans and machines. We validate our approach on the three surgical phases of a Robot-Assisted Radical Prostatectomy (RARP) that directly involve the assistant surgeon: bladder mobilization, bladder neck transection, and vesicourethral anastomosis, all performed on synthetic manikins.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2021.3110676</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>autonomous robotics ; Autonomous robots ; Bladder ; CAS ; Computer assisted surgery ; Knowledge representation ; Machine learning ; Medical robotics ; Modules ; Robot sensing systems ; Robotic surgery ; Statecharts ; Supervisory control ; supervisory controller ; Surgery ; Surgical robotics</subject><ispartof>IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.888-899</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3</citedby><cites>FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3</cites><orcidid>0000-0002-2505-3809 ; 0000-0002-7424-3334 ; 0000-0002-2493-5420 ; 0000-0002-0287-6896 ; 0000-0002-0015-5534 ; 0000-0002-8195-1531 ; 0000-0002-0711-8605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9530457$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Falezza, Fabio</creatorcontrib><creatorcontrib>Piccinelli, Nicola</creatorcontrib><creatorcontrib>De Rossi, Giacomo</creatorcontrib><creatorcontrib>Roberti, Andrea</creatorcontrib><creatorcontrib>Kronreif, Gernot</creatorcontrib><creatorcontrib>Setti, Francesco</creatorcontrib><creatorcontrib>Fiorini, Paolo</creatorcontrib><creatorcontrib>Muradore, Riccardo</creatorcontrib><title>Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><description>In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down approach based on knowledge representation techniques. We consider medical knowledge about the procedure and sensing of the environment in two concurrent regions of the statecharts to facilitate re-usability and adaptability of the modules. Our approach allows producing a well defined procedural model exploiting the hierarchy capability of the statecharts, while machine learning modules act as soft sensors to trigger state transitions. Integrating data driven and prior knowledge techniques provides a robust, modular, flexible and re-configurable methodology to define a surgical procedure which is comprehensible by both humans and machines. We validate our approach on the three surgical phases of a Robot-Assisted Radical Prostatectomy (RARP) that directly involve the assistant surgeon: bladder mobilization, bladder neck transection, and vesicourethral anastomosis, all performed on synthetic manikins.</description><subject>autonomous robotics</subject><subject>Autonomous robots</subject><subject>Bladder</subject><subject>CAS</subject><subject>Computer assisted surgery</subject><subject>Knowledge representation</subject><subject>Machine learning</subject><subject>Medical robotics</subject><subject>Modules</subject><subject>Robot sensing systems</subject><subject>Robotic surgery</subject><subject>Statecharts</subject><subject>Supervisory control</subject><subject>supervisory controller</subject><subject>Surgery</subject><subject>Surgical robotics</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNUNtKAzEQDaJgqf0A8WXB59ZcNol5rMUbtCi9PIfs7Gzd0jY12X3o35u1RYSBuZ1zZjiE3DI6Yoyah-Vs_jTilLORSL3S6oL0uNRqKNLw8l99TQYxbihNUEm1UD2ymvkSt_V-nfkqW7RhXYPbZp_BA5ZtwJitYrdcNK5B-HKhiVnlQ7bAXT0ct43f-51vYzb3hW9q-FXAcLwhV5XbRhycc5-sXp6Xk7fh9OP1fTKeDkEI1aSXJBWKoi5LJ-FRaiY5FDx3BnJIoYqicGVOFSvASCgBUBlWykqDxEKi6JP7k-4h-O8WY2M3vg37dNJyaQynQhueUOyEguBjDFjZQ6h3Lhwto7Yz0HYG2s5AezYwce5OnBoR__BGCppLLX4AOAJtNA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Falezza, Fabio</creator><creator>Piccinelli, Nicola</creator><creator>De Rossi, Giacomo</creator><creator>Roberti, Andrea</creator><creator>Kronreif, Gernot</creator><creator>Setti, Francesco</creator><creator>Fiorini, Paolo</creator><creator>Muradore, Riccardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2505-3809</orcidid><orcidid>https://orcid.org/0000-0002-7424-3334</orcidid><orcidid>https://orcid.org/0000-0002-2493-5420</orcidid><orcidid>https://orcid.org/0000-0002-0287-6896</orcidid><orcidid>https://orcid.org/0000-0002-0015-5534</orcidid><orcidid>https://orcid.org/0000-0002-8195-1531</orcidid><orcidid>https://orcid.org/0000-0002-0711-8605</orcidid></search><sort><creationdate>20211101</creationdate><title>Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery</title><author>Falezza, Fabio ; Piccinelli, Nicola ; De Rossi, Giacomo ; Roberti, Andrea ; Kronreif, Gernot ; Setti, Francesco ; Fiorini, Paolo ; Muradore, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>autonomous robotics</topic><topic>Autonomous robots</topic><topic>Bladder</topic><topic>CAS</topic><topic>Computer assisted surgery</topic><topic>Knowledge representation</topic><topic>Machine learning</topic><topic>Medical robotics</topic><topic>Modules</topic><topic>Robot sensing systems</topic><topic>Robotic surgery</topic><topic>Statecharts</topic><topic>Supervisory control</topic><topic>supervisory controller</topic><topic>Surgery</topic><topic>Surgical robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falezza, Fabio</creatorcontrib><creatorcontrib>Piccinelli, Nicola</creatorcontrib><creatorcontrib>De Rossi, Giacomo</creatorcontrib><creatorcontrib>Roberti, Andrea</creatorcontrib><creatorcontrib>Kronreif, Gernot</creatorcontrib><creatorcontrib>Setti, Francesco</creatorcontrib><creatorcontrib>Fiorini, Paolo</creatorcontrib><creatorcontrib>Muradore, Riccardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falezza, Fabio</au><au>Piccinelli, Nicola</au><au>De Rossi, Giacomo</au><au>Roberti, Andrea</au><au>Kronreif, Gernot</au><au>Setti, Francesco</au><au>Fiorini, Paolo</au><au>Muradore, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>3</volume><issue>4</issue><spage>888</spage><epage>899</epage><pages>888-899</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down approach based on knowledge representation techniques. We consider medical knowledge about the procedure and sensing of the environment in two concurrent regions of the statecharts to facilitate re-usability and adaptability of the modules. Our approach allows producing a well defined procedural model exploiting the hierarchy capability of the statecharts, while machine learning modules act as soft sensors to trigger state transitions. Integrating data driven and prior knowledge techniques provides a robust, modular, flexible and re-configurable methodology to define a surgical procedure which is comprehensible by both humans and machines. We validate our approach on the three surgical phases of a Robot-Assisted Radical Prostatectomy (RARP) that directly involve the assistant surgeon: bladder mobilization, bladder neck transection, and vesicourethral anastomosis, all performed on synthetic manikins.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMRB.2021.3110676</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2505-3809</orcidid><orcidid>https://orcid.org/0000-0002-7424-3334</orcidid><orcidid>https://orcid.org/0000-0002-2493-5420</orcidid><orcidid>https://orcid.org/0000-0002-0287-6896</orcidid><orcidid>https://orcid.org/0000-0002-0015-5534</orcidid><orcidid>https://orcid.org/0000-0002-8195-1531</orcidid><orcidid>https://orcid.org/0000-0002-0711-8605</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2576-3202 |
ispartof | IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.888-899 |
issn | 2576-3202 2576-3202 |
language | eng |
recordid | cdi_ieee_primary_9530457 |
source | IEEE Electronic Library (IEL) Journals |
subjects | autonomous robotics Autonomous robots Bladder CAS Computer assisted surgery Knowledge representation Machine learning Medical robotics Modules Robot sensing systems Robotic surgery Statecharts Supervisory control supervisory controller Surgery Surgical robotics |
title | Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Surgical%20Procedures%20Using%20Statecharts%20for%20Semi-Autonomous%20Robotic%20Surgery&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=Falezza,%20Fabio&rft.date=2021-11-01&rft.volume=3&rft.issue=4&rft.spage=888&rft.epage=899&rft.pages=888-899&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2021.3110676&rft_dat=%3Cproquest_ieee_%3E2599203792%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599203792&rft_id=info:pmid/&rft_ieee_id=9530457&rfr_iscdi=true |