Loading…

Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery

In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on medical robotics and bionics 2021-11, Vol.3 (4), p.888-899
Main Authors: Falezza, Fabio, Piccinelli, Nicola, De Rossi, Giacomo, Roberti, Andrea, Kronreif, Gernot, Setti, Francesco, Fiorini, Paolo, Muradore, Riccardo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3
cites cdi_FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3
container_end_page 899
container_issue 4
container_start_page 888
container_title IEEE transactions on medical robotics and bionics
container_volume 3
creator Falezza, Fabio
Piccinelli, Nicola
De Rossi, Giacomo
Roberti, Andrea
Kronreif, Gernot
Setti, Francesco
Fiorini, Paolo
Muradore, Riccardo
description In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down approach based on knowledge representation techniques. We consider medical knowledge about the procedure and sensing of the environment in two concurrent regions of the statecharts to facilitate re-usability and adaptability of the modules. Our approach allows producing a well defined procedural model exploiting the hierarchy capability of the statecharts, while machine learning modules act as soft sensors to trigger state transitions. Integrating data driven and prior knowledge techniques provides a robust, modular, flexible and re-configurable methodology to define a surgical procedure which is comprehensible by both humans and machines. We validate our approach on the three surgical phases of a Robot-Assisted Radical Prostatectomy (RARP) that directly involve the assistant surgeon: bladder mobilization, bladder neck transection, and vesicourethral anastomosis, all performed on synthetic manikins.
doi_str_mv 10.1109/TMRB.2021.3110676
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9530457</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9530457</ieee_id><sourcerecordid>2599203792</sourcerecordid><originalsourceid>FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3</originalsourceid><addsrcrecordid>eNpNUNtKAzEQDaJgqf0A8WXB59ZcNol5rMUbtCi9PIfs7Gzd0jY12X3o35u1RYSBuZ1zZjiE3DI6Yoyah-Vs_jTilLORSL3S6oL0uNRqKNLw8l99TQYxbihNUEm1UD2ymvkSt_V-nfkqW7RhXYPbZp_BA5ZtwJitYrdcNK5B-HKhiVnlQ7bAXT0ct43f-51vYzb3hW9q-FXAcLwhV5XbRhycc5-sXp6Xk7fh9OP1fTKeDkEI1aSXJBWKoi5LJ-FRaiY5FDx3BnJIoYqicGVOFSvASCgBUBlWykqDxEKi6JP7k-4h-O8WY2M3vg37dNJyaQynQhueUOyEguBjDFjZQ6h3Lhwto7Yz0HYG2s5AezYwce5OnBoR__BGCppLLX4AOAJtNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2599203792</pqid></control><display><type>article</type><title>Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Falezza, Fabio ; Piccinelli, Nicola ; De Rossi, Giacomo ; Roberti, Andrea ; Kronreif, Gernot ; Setti, Francesco ; Fiorini, Paolo ; Muradore, Riccardo</creator><creatorcontrib>Falezza, Fabio ; Piccinelli, Nicola ; De Rossi, Giacomo ; Roberti, Andrea ; Kronreif, Gernot ; Setti, Francesco ; Fiorini, Paolo ; Muradore, Riccardo</creatorcontrib><description>In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down approach based on knowledge representation techniques. We consider medical knowledge about the procedure and sensing of the environment in two concurrent regions of the statecharts to facilitate re-usability and adaptability of the modules. Our approach allows producing a well defined procedural model exploiting the hierarchy capability of the statecharts, while machine learning modules act as soft sensors to trigger state transitions. Integrating data driven and prior knowledge techniques provides a robust, modular, flexible and re-configurable methodology to define a surgical procedure which is comprehensible by both humans and machines. We validate our approach on the three surgical phases of a Robot-Assisted Radical Prostatectomy (RARP) that directly involve the assistant surgeon: bladder mobilization, bladder neck transection, and vesicourethral anastomosis, all performed on synthetic manikins.</description><identifier>ISSN: 2576-3202</identifier><identifier>EISSN: 2576-3202</identifier><identifier>DOI: 10.1109/TMRB.2021.3110676</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>autonomous robotics ; Autonomous robots ; Bladder ; CAS ; Computer assisted surgery ; Knowledge representation ; Machine learning ; Medical robotics ; Modules ; Robot sensing systems ; Robotic surgery ; Statecharts ; Supervisory control ; supervisory controller ; Surgery ; Surgical robotics</subject><ispartof>IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.888-899</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2021</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3</citedby><cites>FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3</cites><orcidid>0000-0002-2505-3809 ; 0000-0002-7424-3334 ; 0000-0002-2493-5420 ; 0000-0002-0287-6896 ; 0000-0002-0015-5534 ; 0000-0002-8195-1531 ; 0000-0002-0711-8605</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9530457$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Falezza, Fabio</creatorcontrib><creatorcontrib>Piccinelli, Nicola</creatorcontrib><creatorcontrib>De Rossi, Giacomo</creatorcontrib><creatorcontrib>Roberti, Andrea</creatorcontrib><creatorcontrib>Kronreif, Gernot</creatorcontrib><creatorcontrib>Setti, Francesco</creatorcontrib><creatorcontrib>Fiorini, Paolo</creatorcontrib><creatorcontrib>Muradore, Riccardo</creatorcontrib><title>Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery</title><title>IEEE transactions on medical robotics and bionics</title><addtitle>TMRB</addtitle><description>In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down approach based on knowledge representation techniques. We consider medical knowledge about the procedure and sensing of the environment in two concurrent regions of the statecharts to facilitate re-usability and adaptability of the modules. Our approach allows producing a well defined procedural model exploiting the hierarchy capability of the statecharts, while machine learning modules act as soft sensors to trigger state transitions. Integrating data driven and prior knowledge techniques provides a robust, modular, flexible and re-configurable methodology to define a surgical procedure which is comprehensible by both humans and machines. We validate our approach on the three surgical phases of a Robot-Assisted Radical Prostatectomy (RARP) that directly involve the assistant surgeon: bladder mobilization, bladder neck transection, and vesicourethral anastomosis, all performed on synthetic manikins.</description><subject>autonomous robotics</subject><subject>Autonomous robots</subject><subject>Bladder</subject><subject>CAS</subject><subject>Computer assisted surgery</subject><subject>Knowledge representation</subject><subject>Machine learning</subject><subject>Medical robotics</subject><subject>Modules</subject><subject>Robot sensing systems</subject><subject>Robotic surgery</subject><subject>Statecharts</subject><subject>Supervisory control</subject><subject>supervisory controller</subject><subject>Surgery</subject><subject>Surgical robotics</subject><issn>2576-3202</issn><issn>2576-3202</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><recordid>eNpNUNtKAzEQDaJgqf0A8WXB59ZcNol5rMUbtCi9PIfs7Gzd0jY12X3o35u1RYSBuZ1zZjiE3DI6Yoyah-Vs_jTilLORSL3S6oL0uNRqKNLw8l99TQYxbihNUEm1UD2ymvkSt_V-nfkqW7RhXYPbZp_BA5ZtwJitYrdcNK5B-HKhiVnlQ7bAXT0ct43f-51vYzb3hW9q-FXAcLwhV5XbRhycc5-sXp6Xk7fh9OP1fTKeDkEI1aSXJBWKoi5LJ-FRaiY5FDx3BnJIoYqicGVOFSvASCgBUBlWykqDxEKi6JP7k-4h-O8WY2M3vg37dNJyaQynQhueUOyEguBjDFjZQ6h3Lhwto7Yz0HYG2s5AezYwce5OnBoR__BGCppLLX4AOAJtNA</recordid><startdate>20211101</startdate><enddate>20211101</enddate><creator>Falezza, Fabio</creator><creator>Piccinelli, Nicola</creator><creator>De Rossi, Giacomo</creator><creator>Roberti, Andrea</creator><creator>Kronreif, Gernot</creator><creator>Setti, Francesco</creator><creator>Fiorini, Paolo</creator><creator>Muradore, Riccardo</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>K9.</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0002-2505-3809</orcidid><orcidid>https://orcid.org/0000-0002-7424-3334</orcidid><orcidid>https://orcid.org/0000-0002-2493-5420</orcidid><orcidid>https://orcid.org/0000-0002-0287-6896</orcidid><orcidid>https://orcid.org/0000-0002-0015-5534</orcidid><orcidid>https://orcid.org/0000-0002-8195-1531</orcidid><orcidid>https://orcid.org/0000-0002-0711-8605</orcidid></search><sort><creationdate>20211101</creationdate><title>Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery</title><author>Falezza, Fabio ; Piccinelli, Nicola ; De Rossi, Giacomo ; Roberti, Andrea ; Kronreif, Gernot ; Setti, Francesco ; Fiorini, Paolo ; Muradore, Riccardo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>autonomous robotics</topic><topic>Autonomous robots</topic><topic>Bladder</topic><topic>CAS</topic><topic>Computer assisted surgery</topic><topic>Knowledge representation</topic><topic>Machine learning</topic><topic>Medical robotics</topic><topic>Modules</topic><topic>Robot sensing systems</topic><topic>Robotic surgery</topic><topic>Statecharts</topic><topic>Supervisory control</topic><topic>supervisory controller</topic><topic>Surgery</topic><topic>Surgical robotics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Falezza, Fabio</creatorcontrib><creatorcontrib>Piccinelli, Nicola</creatorcontrib><creatorcontrib>De Rossi, Giacomo</creatorcontrib><creatorcontrib>Roberti, Andrea</creatorcontrib><creatorcontrib>Kronreif, Gernot</creatorcontrib><creatorcontrib>Setti, Francesco</creatorcontrib><creatorcontrib>Fiorini, Paolo</creatorcontrib><creatorcontrib>Muradore, Riccardo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on medical robotics and bionics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Falezza, Fabio</au><au>Piccinelli, Nicola</au><au>De Rossi, Giacomo</au><au>Roberti, Andrea</au><au>Kronreif, Gernot</au><au>Setti, Francesco</au><au>Fiorini, Paolo</au><au>Muradore, Riccardo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery</atitle><jtitle>IEEE transactions on medical robotics and bionics</jtitle><stitle>TMRB</stitle><date>2021-11-01</date><risdate>2021</risdate><volume>3</volume><issue>4</issue><spage>888</spage><epage>899</epage><pages>888-899</pages><issn>2576-3202</issn><eissn>2576-3202</eissn><abstract>In this paper we propose a new methodology to model surgical procedures that is specifically tailored to semi-autonomous robotic surgery. We propose to use a restricted version of statecharts to merge the bottom-up approach, based on data-driven techniques (e.g., machine learning), with the top-down approach based on knowledge representation techniques. We consider medical knowledge about the procedure and sensing of the environment in two concurrent regions of the statecharts to facilitate re-usability and adaptability of the modules. Our approach allows producing a well defined procedural model exploiting the hierarchy capability of the statecharts, while machine learning modules act as soft sensors to trigger state transitions. Integrating data driven and prior knowledge techniques provides a robust, modular, flexible and re-configurable methodology to define a surgical procedure which is comprehensible by both humans and machines. We validate our approach on the three surgical phases of a Robot-Assisted Radical Prostatectomy (RARP) that directly involve the assistant surgeon: bladder mobilization, bladder neck transection, and vesicourethral anastomosis, all performed on synthetic manikins.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/TMRB.2021.3110676</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-2505-3809</orcidid><orcidid>https://orcid.org/0000-0002-7424-3334</orcidid><orcidid>https://orcid.org/0000-0002-2493-5420</orcidid><orcidid>https://orcid.org/0000-0002-0287-6896</orcidid><orcidid>https://orcid.org/0000-0002-0015-5534</orcidid><orcidid>https://orcid.org/0000-0002-8195-1531</orcidid><orcidid>https://orcid.org/0000-0002-0711-8605</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2576-3202
ispartof IEEE transactions on medical robotics and bionics, 2021-11, Vol.3 (4), p.888-899
issn 2576-3202
2576-3202
language eng
recordid cdi_ieee_primary_9530457
source IEEE Electronic Library (IEL) Journals
subjects autonomous robotics
Autonomous robots
Bladder
CAS
Computer assisted surgery
Knowledge representation
Machine learning
Medical robotics
Modules
Robot sensing systems
Robotic surgery
Statecharts
Supervisory control
supervisory controller
Surgery
Surgical robotics
title Modeling of Surgical Procedures Using Statecharts for Semi-Autonomous Robotic Surgery
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A46%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Modeling%20of%20Surgical%20Procedures%20Using%20Statecharts%20for%20Semi-Autonomous%20Robotic%20Surgery&rft.jtitle=IEEE%20transactions%20on%20medical%20robotics%20and%20bionics&rft.au=Falezza,%20Fabio&rft.date=2021-11-01&rft.volume=3&rft.issue=4&rft.spage=888&rft.epage=899&rft.pages=888-899&rft.issn=2576-3202&rft.eissn=2576-3202&rft_id=info:doi/10.1109/TMRB.2021.3110676&rft_dat=%3Cproquest_ieee_%3E2599203792%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c336t-3250360e7dda5c857152cb24a9c4cc4c6bbbad4061bc95cdcce691d5f7c5eb5e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2599203792&rft_id=info:pmid/&rft_ieee_id=9530457&rfr_iscdi=true