Loading…

EMC: Efficient Muller C-Element Implementation for High Bit-width Asynchronous Applications

A Muller C-Element is a digital circuit component used in most asynchronous circuits and systems. In Null Convention Logic, the Muller C-Elements make up the subset of THmn threshold gates where the threshold, m, and the input bit-width, n, are equal. This paper presents a new Efficient Muller C-Ele...

Full description

Saved in:
Bibliographic Details
Main Authors: Emmert, John M., VanDewerker, Sara A.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 819
container_issue
container_start_page 816
container_title
container_volume
creator Emmert, John M.
VanDewerker, Sara A.
description A Muller C-Element is a digital circuit component used in most asynchronous circuits and systems. In Null Convention Logic, the Muller C-Elements make up the subset of THmn threshold gates where the threshold, m, and the input bit-width, n, are equal. This paper presents a new Efficient Muller C-Element implementation, EMC, that is especially suitable for Null Convention Logic applications with high input bit-widths, and it is much faster and smaller than standard implementations. It has a two-transistor switching delay that is independent of the input bit-width, n, and exhibits low noise and static power consumption. It is suitable for all Muller C-Element applications, especially those like Null Convention Logic register feedback circuits that can have large input bit-widths. To reduce static power consumption, it uses active resistors that are only turned "ON" when necessary. Two output stages are presented to implement the required Muller C-Element digital hysteresis: standard, semi-static cross-coupled inverter version, and differential sense-amplifier option. For large values of n, our circuit requires approximately one-half fewer transistors than combining smaller Null Convention Logic THmn semi-static threshold gates. We have successfully simulated up to n = 1024 at a 65 nm node.
doi_str_mv 10.1109/MWSCAS47672.2021.9531804
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9531804</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9531804</ieee_id><sourcerecordid>9531804</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-23e5e5f757fb007c9841733d839117a895a0d73a70965a09dd6174ed352ced693</originalsourceid><addsrcrecordid>eNotkMtOwzAURA0SEqX0C9j4B1J8_Ta7EIW2UiMWBbFgUYXYJkZ5KU6F-vc82tUcjY5mMQhhIEsAYu6Lt12W7riSii4pobA0goEm_AItjNIgpeCUSxCXaAZC6IRpY67RTYxfhFCmwMzQe15kDzj3PlTBdRMuDk3jRpwleePav2LTDicqp9B32PcjXofPGj-GKfkOdqpxGo9dVY991x8iToehCdW_G2_RlS-b6BbnnKPXp_wlWyfb59UmS7dJoIRNCWVOOOGVUP6DEFUZzUExZjUzAKrURpTEKlYqYuQvGmslKO4sE7RyVho2R3en3eCc2w9jaMvxuD9_wX4AuRRTxA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>EMC: Efficient Muller C-Element Implementation for High Bit-width Asynchronous Applications</title><source>IEEE Xplore All Conference Series</source><creator>Emmert, John M. ; VanDewerker, Sara A.</creator><creatorcontrib>Emmert, John M. ; VanDewerker, Sara A.</creatorcontrib><description>A Muller C-Element is a digital circuit component used in most asynchronous circuits and systems. In Null Convention Logic, the Muller C-Elements make up the subset of THmn threshold gates where the threshold, m, and the input bit-width, n, are equal. This paper presents a new Efficient Muller C-Element implementation, EMC, that is especially suitable for Null Convention Logic applications with high input bit-widths, and it is much faster and smaller than standard implementations. It has a two-transistor switching delay that is independent of the input bit-width, n, and exhibits low noise and static power consumption. It is suitable for all Muller C-Element applications, especially those like Null Convention Logic register feedback circuits that can have large input bit-widths. To reduce static power consumption, it uses active resistors that are only turned "ON" when necessary. Two output stages are presented to implement the required Muller C-Element digital hysteresis: standard, semi-static cross-coupled inverter version, and differential sense-amplifier option. For large values of n, our circuit requires approximately one-half fewer transistors than combining smaller Null Convention Logic THmn semi-static threshold gates. We have successfully simulated up to n = 1024 at a 65 nm node.</description><identifier>EISSN: 1558-3899</identifier><identifier>EISBN: 9781665424615</identifier><identifier>EISBN: 1665424613</identifier><identifier>DOI: 10.1109/MWSCAS47672.2021.9531804</identifier><language>eng</language><publisher>IEEE</publisher><subject>Assurance ; asynchronous ; Electromagnetic compatibility ; Feedback circuits ; feedback register ; Inverters ; logic ; Logic gates ; Muller C-element ; null convention logic ; Power demand ; Resistors ; security ; side-channel attacks ; Switches ; threshold gates ; trust</subject><ispartof>2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2021, p.816-819</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9531804$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9531804$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Emmert, John M.</creatorcontrib><creatorcontrib>VanDewerker, Sara A.</creatorcontrib><title>EMC: Efficient Muller C-Element Implementation for High Bit-width Asynchronous Applications</title><title>2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)</title><addtitle>MWSCAS</addtitle><description>A Muller C-Element is a digital circuit component used in most asynchronous circuits and systems. In Null Convention Logic, the Muller C-Elements make up the subset of THmn threshold gates where the threshold, m, and the input bit-width, n, are equal. This paper presents a new Efficient Muller C-Element implementation, EMC, that is especially suitable for Null Convention Logic applications with high input bit-widths, and it is much faster and smaller than standard implementations. It has a two-transistor switching delay that is independent of the input bit-width, n, and exhibits low noise and static power consumption. It is suitable for all Muller C-Element applications, especially those like Null Convention Logic register feedback circuits that can have large input bit-widths. To reduce static power consumption, it uses active resistors that are only turned "ON" when necessary. Two output stages are presented to implement the required Muller C-Element digital hysteresis: standard, semi-static cross-coupled inverter version, and differential sense-amplifier option. For large values of n, our circuit requires approximately one-half fewer transistors than combining smaller Null Convention Logic THmn semi-static threshold gates. We have successfully simulated up to n = 1024 at a 65 nm node.</description><subject>Assurance</subject><subject>asynchronous</subject><subject>Electromagnetic compatibility</subject><subject>Feedback circuits</subject><subject>feedback register</subject><subject>Inverters</subject><subject>logic</subject><subject>Logic gates</subject><subject>Muller C-element</subject><subject>null convention logic</subject><subject>Power demand</subject><subject>Resistors</subject><subject>security</subject><subject>side-channel attacks</subject><subject>Switches</subject><subject>threshold gates</subject><subject>trust</subject><issn>1558-3899</issn><isbn>9781665424615</isbn><isbn>1665424613</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkMtOwzAURA0SEqX0C9j4B1J8_Ta7EIW2UiMWBbFgUYXYJkZ5KU6F-vc82tUcjY5mMQhhIEsAYu6Lt12W7riSii4pobA0goEm_AItjNIgpeCUSxCXaAZC6IRpY67RTYxfhFCmwMzQe15kDzj3PlTBdRMuDk3jRpwleePav2LTDicqp9B32PcjXofPGj-GKfkOdqpxGo9dVY991x8iToehCdW_G2_RlS-b6BbnnKPXp_wlWyfb59UmS7dJoIRNCWVOOOGVUP6DEFUZzUExZjUzAKrURpTEKlYqYuQvGmslKO4sE7RyVho2R3en3eCc2w9jaMvxuD9_wX4AuRRTxA</recordid><startdate>20210809</startdate><enddate>20210809</enddate><creator>Emmert, John M.</creator><creator>VanDewerker, Sara A.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210809</creationdate><title>EMC: Efficient Muller C-Element Implementation for High Bit-width Asynchronous Applications</title><author>Emmert, John M. ; VanDewerker, Sara A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-23e5e5f757fb007c9841733d839117a895a0d73a70965a09dd6174ed352ced693</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Assurance</topic><topic>asynchronous</topic><topic>Electromagnetic compatibility</topic><topic>Feedback circuits</topic><topic>feedback register</topic><topic>Inverters</topic><topic>logic</topic><topic>Logic gates</topic><topic>Muller C-element</topic><topic>null convention logic</topic><topic>Power demand</topic><topic>Resistors</topic><topic>security</topic><topic>side-channel attacks</topic><topic>Switches</topic><topic>threshold gates</topic><topic>trust</topic><toplevel>online_resources</toplevel><creatorcontrib>Emmert, John M.</creatorcontrib><creatorcontrib>VanDewerker, Sara A.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Emmert, John M.</au><au>VanDewerker, Sara A.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>EMC: Efficient Muller C-Element Implementation for High Bit-width Asynchronous Applications</atitle><btitle>2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)</btitle><stitle>MWSCAS</stitle><date>2021-08-09</date><risdate>2021</risdate><spage>816</spage><epage>819</epage><pages>816-819</pages><eissn>1558-3899</eissn><eisbn>9781665424615</eisbn><eisbn>1665424613</eisbn><abstract>A Muller C-Element is a digital circuit component used in most asynchronous circuits and systems. In Null Convention Logic, the Muller C-Elements make up the subset of THmn threshold gates where the threshold, m, and the input bit-width, n, are equal. This paper presents a new Efficient Muller C-Element implementation, EMC, that is especially suitable for Null Convention Logic applications with high input bit-widths, and it is much faster and smaller than standard implementations. It has a two-transistor switching delay that is independent of the input bit-width, n, and exhibits low noise and static power consumption. It is suitable for all Muller C-Element applications, especially those like Null Convention Logic register feedback circuits that can have large input bit-widths. To reduce static power consumption, it uses active resistors that are only turned "ON" when necessary. Two output stages are presented to implement the required Muller C-Element digital hysteresis: standard, semi-static cross-coupled inverter version, and differential sense-amplifier option. For large values of n, our circuit requires approximately one-half fewer transistors than combining smaller Null Convention Logic THmn semi-static threshold gates. We have successfully simulated up to n = 1024 at a 65 nm node.</abstract><pub>IEEE</pub><doi>10.1109/MWSCAS47672.2021.9531804</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1558-3899
ispartof 2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS), 2021, p.816-819
issn 1558-3899
language eng
recordid cdi_ieee_primary_9531804
source IEEE Xplore All Conference Series
subjects Assurance
asynchronous
Electromagnetic compatibility
Feedback circuits
feedback register
Inverters
logic
Logic gates
Muller C-element
null convention logic
Power demand
Resistors
security
side-channel attacks
Switches
threshold gates
trust
title EMC: Efficient Muller C-Element Implementation for High Bit-width Asynchronous Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T21%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=EMC:%20Efficient%20Muller%20C-Element%20Implementation%20for%20High%20Bit-width%20Asynchronous%20Applications&rft.btitle=2021%20IEEE%20International%20Midwest%20Symposium%20on%20Circuits%20and%20Systems%20(MWSCAS)&rft.au=Emmert,%20John%20M.&rft.date=2021-08-09&rft.spage=816&rft.epage=819&rft.pages=816-819&rft.eissn=1558-3899&rft_id=info:doi/10.1109/MWSCAS47672.2021.9531804&rft.eisbn=9781665424615&rft.eisbn_list=1665424613&rft_dat=%3Cieee_CHZPO%3E9531804%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-23e5e5f757fb007c9841733d839117a895a0d73a70965a09dd6174ed352ced693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9531804&rfr_iscdi=true