Loading…

Practical Analysis on Architecture of EfficientNet

Convolutional neural networks (CNNs) are now used in a variety of computer vision applications. However, it is quite hard to adopt them in real-time system due to the problem of increasing model size. Recently, some efficient networks which still have acceptable performance are proposed. Among them,...

Full description

Saved in:
Bibliographic Details
Main Authors: Hoang, Van-Thanh, Jo, Kang-Hyun
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator Hoang, Van-Thanh
Jo, Kang-Hyun
description Convolutional neural networks (CNNs) are now used in a variety of computer vision applications. However, it is quite hard to adopt them in real-time system due to the problem of increasing model size. Recently, some efficient networks which still have acceptable performance are proposed. Among them, EfficientNet is one of the state-of-the-art architectures. It can be considered a family of network models. EfficientNet could take its place among the state-of-the-art on the ImageNet challenge while still have much fewer parameters and computation cost. But given some of its subtleties, it is more efficient than most of its predecessors. It uses the inverted bottleneck residual blocks of MobileNetV2, in addition to squeeze-and-excitation modules (SE modules). This paper investigates the effect of SE modules on the performance of EfficientNet-B0, the fundamental network model in its family, by repositioning/removing the SE modules.
doi_str_mv 10.1109/HSI52170.2021.9538782
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9538782</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9538782</ieee_id><sourcerecordid>9538782</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-b584f5751bec3266edd5ddefc33651192ec689925004d062c6a0fc72dd287763</originalsourceid><addsrcrecordid>eNotz81Kw0AUQOFRECw1TyBCXiDx3jv_y1CqLZQq2H2ZztzBkZhKEhd9exd2dXYfHCGeEFpE8M-bj60mtNASELZeS2cd3YjKW4fGaKUQSd2KBaF2DZFW96Kapi8AkOicJ1wIeh9DnEsMfd0Nob9MZarPQ92N8bPMHOffketzrtc5l1h4mPc8P4i7HPqJq2uX4vCyPqw2ze7tdbvqdk0hkHNz0k5lbTWeOEoyhlPSKXGOUhqN6Imjcd6TBlAJDEUTIEdLKZGz1silePxnCzMff8byHcbL8Top_wA8_kT8</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Practical Analysis on Architecture of EfficientNet</title><source>IEEE Xplore All Conference Series</source><creator>Hoang, Van-Thanh ; Jo, Kang-Hyun</creator><creatorcontrib>Hoang, Van-Thanh ; Jo, Kang-Hyun</creatorcontrib><description>Convolutional neural networks (CNNs) are now used in a variety of computer vision applications. However, it is quite hard to adopt them in real-time system due to the problem of increasing model size. Recently, some efficient networks which still have acceptable performance are proposed. Among them, EfficientNet is one of the state-of-the-art architectures. It can be considered a family of network models. EfficientNet could take its place among the state-of-the-art on the ImageNet challenge while still have much fewer parameters and computation cost. But given some of its subtleties, it is more efficient than most of its predecessors. It uses the inverted bottleneck residual blocks of MobileNetV2, in addition to squeeze-and-excitation modules (SE modules). This paper investigates the effect of SE modules on the performance of EfficientNet-B0, the fundamental network model in its family, by repositioning/removing the SE modules.</description><identifier>EISSN: 2158-2254</identifier><identifier>EISBN: 9781665441124</identifier><identifier>EISBN: 1665441127</identifier><identifier>DOI: 10.1109/HSI52170.2021.9538782</identifier><language>eng</language><publisher>IEEE</publisher><subject>Analytical models ; Computational modeling ; Computer architecture ; Computer vision ; Costs ; efficient CNN architecture ; efficientnet ; Mobile handsets ; Real-time systems ; SE module</subject><ispartof>2021 14th International Conference on Human System Interaction (HSI), 2021, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9538782$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9538782$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Hoang, Van-Thanh</creatorcontrib><creatorcontrib>Jo, Kang-Hyun</creatorcontrib><title>Practical Analysis on Architecture of EfficientNet</title><title>2021 14th International Conference on Human System Interaction (HSI)</title><addtitle>HSI</addtitle><description>Convolutional neural networks (CNNs) are now used in a variety of computer vision applications. However, it is quite hard to adopt them in real-time system due to the problem of increasing model size. Recently, some efficient networks which still have acceptable performance are proposed. Among them, EfficientNet is one of the state-of-the-art architectures. It can be considered a family of network models. EfficientNet could take its place among the state-of-the-art on the ImageNet challenge while still have much fewer parameters and computation cost. But given some of its subtleties, it is more efficient than most of its predecessors. It uses the inverted bottleneck residual blocks of MobileNetV2, in addition to squeeze-and-excitation modules (SE modules). This paper investigates the effect of SE modules on the performance of EfficientNet-B0, the fundamental network model in its family, by repositioning/removing the SE modules.</description><subject>Analytical models</subject><subject>Computational modeling</subject><subject>Computer architecture</subject><subject>Computer vision</subject><subject>Costs</subject><subject>efficient CNN architecture</subject><subject>efficientnet</subject><subject>Mobile handsets</subject><subject>Real-time systems</subject><subject>SE module</subject><issn>2158-2254</issn><isbn>9781665441124</isbn><isbn>1665441127</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotz81Kw0AUQOFRECw1TyBCXiDx3jv_y1CqLZQq2H2ZztzBkZhKEhd9exd2dXYfHCGeEFpE8M-bj60mtNASELZeS2cd3YjKW4fGaKUQSd2KBaF2DZFW96Kapi8AkOicJ1wIeh9DnEsMfd0Nob9MZarPQ92N8bPMHOffketzrtc5l1h4mPc8P4i7HPqJq2uX4vCyPqw2ze7tdbvqdk0hkHNz0k5lbTWeOEoyhlPSKXGOUhqN6Imjcd6TBlAJDEUTIEdLKZGz1silePxnCzMff8byHcbL8Top_wA8_kT8</recordid><startdate>20210708</startdate><enddate>20210708</enddate><creator>Hoang, Van-Thanh</creator><creator>Jo, Kang-Hyun</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210708</creationdate><title>Practical Analysis on Architecture of EfficientNet</title><author>Hoang, Van-Thanh ; Jo, Kang-Hyun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-b584f5751bec3266edd5ddefc33651192ec689925004d062c6a0fc72dd287763</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Analytical models</topic><topic>Computational modeling</topic><topic>Computer architecture</topic><topic>Computer vision</topic><topic>Costs</topic><topic>efficient CNN architecture</topic><topic>efficientnet</topic><topic>Mobile handsets</topic><topic>Real-time systems</topic><topic>SE module</topic><toplevel>online_resources</toplevel><creatorcontrib>Hoang, Van-Thanh</creatorcontrib><creatorcontrib>Jo, Kang-Hyun</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Hoang, Van-Thanh</au><au>Jo, Kang-Hyun</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Practical Analysis on Architecture of EfficientNet</atitle><btitle>2021 14th International Conference on Human System Interaction (HSI)</btitle><stitle>HSI</stitle><date>2021-07-08</date><risdate>2021</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2158-2254</eissn><eisbn>9781665441124</eisbn><eisbn>1665441127</eisbn><abstract>Convolutional neural networks (CNNs) are now used in a variety of computer vision applications. However, it is quite hard to adopt them in real-time system due to the problem of increasing model size. Recently, some efficient networks which still have acceptable performance are proposed. Among them, EfficientNet is one of the state-of-the-art architectures. It can be considered a family of network models. EfficientNet could take its place among the state-of-the-art on the ImageNet challenge while still have much fewer parameters and computation cost. But given some of its subtleties, it is more efficient than most of its predecessors. It uses the inverted bottleneck residual blocks of MobileNetV2, in addition to squeeze-and-excitation modules (SE modules). This paper investigates the effect of SE modules on the performance of EfficientNet-B0, the fundamental network model in its family, by repositioning/removing the SE modules.</abstract><pub>IEEE</pub><doi>10.1109/HSI52170.2021.9538782</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2158-2254
ispartof 2021 14th International Conference on Human System Interaction (HSI), 2021, p.1-4
issn 2158-2254
language eng
recordid cdi_ieee_primary_9538782
source IEEE Xplore All Conference Series
subjects Analytical models
Computational modeling
Computer architecture
Computer vision
Costs
efficient CNN architecture
efficientnet
Mobile handsets
Real-time systems
SE module
title Practical Analysis on Architecture of EfficientNet
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T17%3A40%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Practical%20Analysis%20on%20Architecture%20of%20EfficientNet&rft.btitle=2021%2014th%20International%20Conference%20on%20Human%20System%20Interaction%20(HSI)&rft.au=Hoang,%20Van-Thanh&rft.date=2021-07-08&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2158-2254&rft_id=info:doi/10.1109/HSI52170.2021.9538782&rft.eisbn=9781665441124&rft.eisbn_list=1665441127&rft_dat=%3Cieee_CHZPO%3E9538782%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-b584f5751bec3266edd5ddefc33651192ec689925004d062c6a0fc72dd287763%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9538782&rfr_iscdi=true