Loading…

Global land use / land cover with Sentinel 2 and deep learning

Land use/land cover (LULC) maps are foundational geospatial data products needed by analysts and decision makers across governments, civil society, industry, and finance to monitor global environmental change and measure risk to sustainable livelihoods and development. There is a strong need for hig...

Full description

Saved in:
Bibliographic Details
Main Authors: Karra, Krishna, Kontgis, Caitlin, Statman-Weil, Zoe, Mazzariello, Joseph C., Mathis, Mark, Brumby, Steven P.
Format: Conference Proceeding
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c228t-7c55fccbfa980184b2c8fe241e1e75d56b252af18229df7ef123ad26644b5b973
cites
container_end_page 4707
container_issue
container_start_page 4704
container_title
container_volume
creator Karra, Krishna
Kontgis, Caitlin
Statman-Weil, Zoe
Mazzariello, Joseph C.
Mathis, Mark
Brumby, Steven P.
description Land use/land cover (LULC) maps are foundational geospatial data products needed by analysts and decision makers across governments, civil society, industry, and finance to monitor global environmental change and measure risk to sustainable livelihoods and development. There is a strong need for high-level, automated geospatial analysis products that turn these pixels into actionable insights for non-geospatial experts. The Sentinel 2 satellites, first launched in mid-2015, are excellent candidates for LULC mapping due to their high spatial, spectral, and temporal resolution. Advances in deep learning and scalable cloud-based compute now provide the analysis capability required to unlock the value in global satellite imagery observations. Based on a novel, very large dataset of over 5 billion human-labeled Sentinel-2 pixels, we developed and deployed a deep learning segmentation model on Sentinel-2 data to create a global LULC map at 10m resolution that achieves state-of-the-art accuracy and enables automated LULC mapping from time series observations.
doi_str_mv 10.1109/IGARSS47720.2021.9553499
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9553499</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9553499</ieee_id><sourcerecordid>9553499</sourcerecordid><originalsourceid>FETCH-LOGICAL-c228t-7c55fccbfa980184b2c8fe241e1e75d56b252af18229df7ef123ad26644b5b973</originalsourceid><addsrcrecordid>eNotj9tKw0AURUdBsNZ-gS_zA0lnztxfhFI0FgqC0ecylzMaGdOSRMW_V2mf1oIFGzYhlLOac-aWm2b11LbSGGA1MOC1U0pI587IwhnLtVaSCe30OZkBV6IyjIlLcjWO739igbEZuW3KPvhCi-8T_RyRLo8a91840O9ueqMt9lPXY6FA_0tCPNCCfui7_vWaXGRfRlycOCcv93fP64dq-9hs1qttFQHsVJmoVI4xZO8s41YGiDYjSI4cjUpKB1DgM7cALmWDmYPwCbSWMqjgjJiTm-Nuh4i7w9B9-OFnd7orfgEXQUkz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Global land use / land cover with Sentinel 2 and deep learning</title><source>IEEE Xplore All Conference Series</source><creator>Karra, Krishna ; Kontgis, Caitlin ; Statman-Weil, Zoe ; Mazzariello, Joseph C. ; Mathis, Mark ; Brumby, Steven P.</creator><creatorcontrib>Karra, Krishna ; Kontgis, Caitlin ; Statman-Weil, Zoe ; Mazzariello, Joseph C. ; Mathis, Mark ; Brumby, Steven P.</creatorcontrib><description>Land use/land cover (LULC) maps are foundational geospatial data products needed by analysts and decision makers across governments, civil society, industry, and finance to monitor global environmental change and measure risk to sustainable livelihoods and development. There is a strong need for high-level, automated geospatial analysis products that turn these pixels into actionable insights for non-geospatial experts. The Sentinel 2 satellites, first launched in mid-2015, are excellent candidates for LULC mapping due to their high spatial, spectral, and temporal resolution. Advances in deep learning and scalable cloud-based compute now provide the analysis capability required to unlock the value in global satellite imagery observations. Based on a novel, very large dataset of over 5 billion human-labeled Sentinel-2 pixels, we developed and deployed a deep learning segmentation model on Sentinel-2 data to create a global LULC map at 10m resolution that achieves state-of-the-art accuracy and enables automated LULC mapping from time series observations.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781665403696</identifier><identifier>EISBN: 1665403691</identifier><identifier>DOI: 10.1109/IGARSS47720.2021.9553499</identifier><language>eng</language><publisher>IEEE</publisher><subject>Deep learning ; Geoscience and remote sensing ; Government ; Image segmentation ; Industries ; land use land cover ; Satellites ; segmentation ; Sentinel 2 ; Time series analysis</subject><ispartof>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, p.4704-4707</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c228t-7c55fccbfa980184b2c8fe241e1e75d56b252af18229df7ef123ad26644b5b973</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9553499$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9553499$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Karra, Krishna</creatorcontrib><creatorcontrib>Kontgis, Caitlin</creatorcontrib><creatorcontrib>Statman-Weil, Zoe</creatorcontrib><creatorcontrib>Mazzariello, Joseph C.</creatorcontrib><creatorcontrib>Mathis, Mark</creatorcontrib><creatorcontrib>Brumby, Steven P.</creatorcontrib><title>Global land use / land cover with Sentinel 2 and deep learning</title><title>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS</title><addtitle>IGARSS</addtitle><description>Land use/land cover (LULC) maps are foundational geospatial data products needed by analysts and decision makers across governments, civil society, industry, and finance to monitor global environmental change and measure risk to sustainable livelihoods and development. There is a strong need for high-level, automated geospatial analysis products that turn these pixels into actionable insights for non-geospatial experts. The Sentinel 2 satellites, first launched in mid-2015, are excellent candidates for LULC mapping due to their high spatial, spectral, and temporal resolution. Advances in deep learning and scalable cloud-based compute now provide the analysis capability required to unlock the value in global satellite imagery observations. Based on a novel, very large dataset of over 5 billion human-labeled Sentinel-2 pixels, we developed and deployed a deep learning segmentation model on Sentinel-2 data to create a global LULC map at 10m resolution that achieves state-of-the-art accuracy and enables automated LULC mapping from time series observations.</description><subject>Deep learning</subject><subject>Geoscience and remote sensing</subject><subject>Government</subject><subject>Image segmentation</subject><subject>Industries</subject><subject>land use land cover</subject><subject>Satellites</subject><subject>segmentation</subject><subject>Sentinel 2</subject><subject>Time series analysis</subject><issn>2153-7003</issn><isbn>9781665403696</isbn><isbn>1665403691</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj9tKw0AURUdBsNZ-gS_zA0lnztxfhFI0FgqC0ecylzMaGdOSRMW_V2mf1oIFGzYhlLOac-aWm2b11LbSGGA1MOC1U0pI587IwhnLtVaSCe30OZkBV6IyjIlLcjWO739igbEZuW3KPvhCi-8T_RyRLo8a91840O9ueqMt9lPXY6FA_0tCPNCCfui7_vWaXGRfRlycOCcv93fP64dq-9hs1qttFQHsVJmoVI4xZO8s41YGiDYjSI4cjUpKB1DgM7cALmWDmYPwCbSWMqjgjJiTm-Nuh4i7w9B9-OFnd7orfgEXQUkz</recordid><startdate>20210711</startdate><enddate>20210711</enddate><creator>Karra, Krishna</creator><creator>Kontgis, Caitlin</creator><creator>Statman-Weil, Zoe</creator><creator>Mazzariello, Joseph C.</creator><creator>Mathis, Mark</creator><creator>Brumby, Steven P.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210711</creationdate><title>Global land use / land cover with Sentinel 2 and deep learning</title><author>Karra, Krishna ; Kontgis, Caitlin ; Statman-Weil, Zoe ; Mazzariello, Joseph C. ; Mathis, Mark ; Brumby, Steven P.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c228t-7c55fccbfa980184b2c8fe241e1e75d56b252af18229df7ef123ad26644b5b973</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Deep learning</topic><topic>Geoscience and remote sensing</topic><topic>Government</topic><topic>Image segmentation</topic><topic>Industries</topic><topic>land use land cover</topic><topic>Satellites</topic><topic>segmentation</topic><topic>Sentinel 2</topic><topic>Time series analysis</topic><toplevel>online_resources</toplevel><creatorcontrib>Karra, Krishna</creatorcontrib><creatorcontrib>Kontgis, Caitlin</creatorcontrib><creatorcontrib>Statman-Weil, Zoe</creatorcontrib><creatorcontrib>Mazzariello, Joseph C.</creatorcontrib><creatorcontrib>Mathis, Mark</creatorcontrib><creatorcontrib>Brumby, Steven P.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Karra, Krishna</au><au>Kontgis, Caitlin</au><au>Statman-Weil, Zoe</au><au>Mazzariello, Joseph C.</au><au>Mathis, Mark</au><au>Brumby, Steven P.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Global land use / land cover with Sentinel 2 and deep learning</atitle><btitle>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS</btitle><stitle>IGARSS</stitle><date>2021-07-11</date><risdate>2021</risdate><spage>4704</spage><epage>4707</epage><pages>4704-4707</pages><eissn>2153-7003</eissn><eisbn>9781665403696</eisbn><eisbn>1665403691</eisbn><abstract>Land use/land cover (LULC) maps are foundational geospatial data products needed by analysts and decision makers across governments, civil society, industry, and finance to monitor global environmental change and measure risk to sustainable livelihoods and development. There is a strong need for high-level, automated geospatial analysis products that turn these pixels into actionable insights for non-geospatial experts. The Sentinel 2 satellites, first launched in mid-2015, are excellent candidates for LULC mapping due to their high spatial, spectral, and temporal resolution. Advances in deep learning and scalable cloud-based compute now provide the analysis capability required to unlock the value in global satellite imagery observations. Based on a novel, very large dataset of over 5 billion human-labeled Sentinel-2 pixels, we developed and deployed a deep learning segmentation model on Sentinel-2 data to create a global LULC map at 10m resolution that achieves state-of-the-art accuracy and enables automated LULC mapping from time series observations.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS47720.2021.9553499</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, p.4704-4707
issn 2153-7003
language eng
recordid cdi_ieee_primary_9553499
source IEEE Xplore All Conference Series
subjects Deep learning
Geoscience and remote sensing
Government
Image segmentation
Industries
land use land cover
Satellites
segmentation
Sentinel 2
Time series analysis
title Global land use / land cover with Sentinel 2 and deep learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T17%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Global%20land%20use%20/%20land%20cover%20with%20Sentinel%202%20and%20deep%20learning&rft.btitle=2021%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium%20IGARSS&rft.au=Karra,%20Krishna&rft.date=2021-07-11&rft.spage=4704&rft.epage=4707&rft.pages=4704-4707&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS47720.2021.9553499&rft.eisbn=9781665403696&rft.eisbn_list=1665403691&rft_dat=%3Cieee_CHZPO%3E9553499%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c228t-7c55fccbfa980184b2c8fe241e1e75d56b252af18229df7ef123ad26644b5b973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9553499&rfr_iscdi=true