Loading…
Re-DLinkNet: Based on DLinkNet and ReNet for Road Extraction from High Resolution Satellite Imagery
In order to speed up the update of existing road maps, it is crucial to develop a more efficient road extraction method from remote sensing images. In recent years, deep learning techniques have been widely used for road extraction applications. Among current CNN-based deep networks for road extract...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4667 |
container_issue | |
container_start_page | 4664 |
container_title | |
container_volume | |
creator | Wang, Yuchuan Tong, Ling Wen, Jiang Xiao, Fanghong Gao, Yaqi He, Liubei Li, DingMao |
description | In order to speed up the update of existing road maps, it is crucial to develop a more efficient road extraction method from remote sensing images. In recent years, deep learning techniques have been widely used for road extraction applications. Among current CNN-based deep networks for road extraction, few works study the shape of the convolution kernel, and the remote contextual features dependency relationship is not fully utilized. In view of these problems, an improved DLinkNet is proposed in this paper. Firstly, a convolutional layer which fuses information of multiple scales is used to replace the InitBlock in the front of the network. Secondly, instead of using the D-Block, the DenseRe-Block is applied to the center structure of DLinkNet. The experimental results show that the improved network has a higher IoU score than DLinkNet when extracting roads from optical images in both city and mountain town areas. |
doi_str_mv | 10.1109/IGARSS47720.2021.9553728 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9553728</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9553728</ieee_id><sourcerecordid>9553728</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-4e9ccb9d120a27a74ff7c5b6ce6f1039e3605e0442005e1eafe39d00208f486f3</originalsourceid><addsrcrecordid>eNo1kNtKw0AYhFdBsNY-gTf7Aqn_nrPe1dpDICgkel22yb91NQdJIti3N2q9mmH4GIYhhDKYMwb2NtkssjyXxnCYc-BsbpUShsdnZGZNzLRWEoS2-pxMOFMiMgDiklz1_dtoYg4wIUWG0UMamvdHHO7oveuxpG1D_yPqmpJm-ON829GsdSVdfQ2dK4YwYr5ra7oNh9eR6dvq8zfM3YBVFQakSe0O2B2vyYV3VY-zk07Jy3r1vNxG6dMmWS7SKDAWD5FEWxR7WzIOjhtnpPemUHtdoPYMhEWhQSFIOQ5XyNB5FLYE4BB7GWsvpuTmrzcg4u6jC7XrjrvTJ-IbTbBWfQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Re-DLinkNet: Based on DLinkNet and ReNet for Road Extraction from High Resolution Satellite Imagery</title><source>IEEE Xplore All Conference Series</source><creator>Wang, Yuchuan ; Tong, Ling ; Wen, Jiang ; Xiao, Fanghong ; Gao, Yaqi ; He, Liubei ; Li, DingMao</creator><creatorcontrib>Wang, Yuchuan ; Tong, Ling ; Wen, Jiang ; Xiao, Fanghong ; Gao, Yaqi ; He, Liubei ; Li, DingMao</creatorcontrib><description>In order to speed up the update of existing road maps, it is crucial to develop a more efficient road extraction method from remote sensing images. In recent years, deep learning techniques have been widely used for road extraction applications. Among current CNN-based deep networks for road extraction, few works study the shape of the convolution kernel, and the remote contextual features dependency relationship is not fully utilized. In view of these problems, an improved DLinkNet is proposed in this paper. Firstly, a convolutional layer which fuses information of multiple scales is used to replace the InitBlock in the front of the network. Secondly, instead of using the D-Block, the DenseRe-Block is applied to the center structure of DLinkNet. The experimental results show that the improved network has a higher IoU score than DLinkNet when extracting roads from optical images in both city and mountain town areas.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781665403696</identifier><identifier>EISBN: 1665403691</identifier><identifier>DOI: 10.1109/IGARSS47720.2021.9553728</identifier><language>eng</language><publisher>IEEE</publisher><subject>Convolution ; DenseRe-Block ; DLinkNet ; Feature extraction ; Image Processing ; Optical fiber networks ; Remote Sensing ; Road Extraction ; Roads ; Satellites ; Shape ; Urban areas</subject><ispartof>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, p.4664-4667</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9553728$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9553728$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Wang, Yuchuan</creatorcontrib><creatorcontrib>Tong, Ling</creatorcontrib><creatorcontrib>Wen, Jiang</creatorcontrib><creatorcontrib>Xiao, Fanghong</creatorcontrib><creatorcontrib>Gao, Yaqi</creatorcontrib><creatorcontrib>He, Liubei</creatorcontrib><creatorcontrib>Li, DingMao</creatorcontrib><title>Re-DLinkNet: Based on DLinkNet and ReNet for Road Extraction from High Resolution Satellite Imagery</title><title>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS</title><addtitle>IGARSS</addtitle><description>In order to speed up the update of existing road maps, it is crucial to develop a more efficient road extraction method from remote sensing images. In recent years, deep learning techniques have been widely used for road extraction applications. Among current CNN-based deep networks for road extraction, few works study the shape of the convolution kernel, and the remote contextual features dependency relationship is not fully utilized. In view of these problems, an improved DLinkNet is proposed in this paper. Firstly, a convolutional layer which fuses information of multiple scales is used to replace the InitBlock in the front of the network. Secondly, instead of using the D-Block, the DenseRe-Block is applied to the center structure of DLinkNet. The experimental results show that the improved network has a higher IoU score than DLinkNet when extracting roads from optical images in both city and mountain town areas.</description><subject>Convolution</subject><subject>DenseRe-Block</subject><subject>DLinkNet</subject><subject>Feature extraction</subject><subject>Image Processing</subject><subject>Optical fiber networks</subject><subject>Remote Sensing</subject><subject>Road Extraction</subject><subject>Roads</subject><subject>Satellites</subject><subject>Shape</subject><subject>Urban areas</subject><issn>2153-7003</issn><isbn>9781665403696</isbn><isbn>1665403691</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kNtKw0AYhFdBsNY-gTf7Aqn_nrPe1dpDICgkel22yb91NQdJIti3N2q9mmH4GIYhhDKYMwb2NtkssjyXxnCYc-BsbpUShsdnZGZNzLRWEoS2-pxMOFMiMgDiklz1_dtoYg4wIUWG0UMamvdHHO7oveuxpG1D_yPqmpJm-ON829GsdSVdfQ2dK4YwYr5ra7oNh9eR6dvq8zfM3YBVFQakSe0O2B2vyYV3VY-zk07Jy3r1vNxG6dMmWS7SKDAWD5FEWxR7WzIOjhtnpPemUHtdoPYMhEWhQSFIOQ5XyNB5FLYE4BB7GWsvpuTmrzcg4u6jC7XrjrvTJ-IbTbBWfQ</recordid><startdate>20210711</startdate><enddate>20210711</enddate><creator>Wang, Yuchuan</creator><creator>Tong, Ling</creator><creator>Wen, Jiang</creator><creator>Xiao, Fanghong</creator><creator>Gao, Yaqi</creator><creator>He, Liubei</creator><creator>Li, DingMao</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210711</creationdate><title>Re-DLinkNet: Based on DLinkNet and ReNet for Road Extraction from High Resolution Satellite Imagery</title><author>Wang, Yuchuan ; Tong, Ling ; Wen, Jiang ; Xiao, Fanghong ; Gao, Yaqi ; He, Liubei ; Li, DingMao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-4e9ccb9d120a27a74ff7c5b6ce6f1039e3605e0442005e1eafe39d00208f486f3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Convolution</topic><topic>DenseRe-Block</topic><topic>DLinkNet</topic><topic>Feature extraction</topic><topic>Image Processing</topic><topic>Optical fiber networks</topic><topic>Remote Sensing</topic><topic>Road Extraction</topic><topic>Roads</topic><topic>Satellites</topic><topic>Shape</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Wang, Yuchuan</creatorcontrib><creatorcontrib>Tong, Ling</creatorcontrib><creatorcontrib>Wen, Jiang</creatorcontrib><creatorcontrib>Xiao, Fanghong</creatorcontrib><creatorcontrib>Gao, Yaqi</creatorcontrib><creatorcontrib>He, Liubei</creatorcontrib><creatorcontrib>Li, DingMao</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Wang, Yuchuan</au><au>Tong, Ling</au><au>Wen, Jiang</au><au>Xiao, Fanghong</au><au>Gao, Yaqi</au><au>He, Liubei</au><au>Li, DingMao</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Re-DLinkNet: Based on DLinkNet and ReNet for Road Extraction from High Resolution Satellite Imagery</atitle><btitle>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS</btitle><stitle>IGARSS</stitle><date>2021-07-11</date><risdate>2021</risdate><spage>4664</spage><epage>4667</epage><pages>4664-4667</pages><eissn>2153-7003</eissn><eisbn>9781665403696</eisbn><eisbn>1665403691</eisbn><abstract>In order to speed up the update of existing road maps, it is crucial to develop a more efficient road extraction method from remote sensing images. In recent years, deep learning techniques have been widely used for road extraction applications. Among current CNN-based deep networks for road extraction, few works study the shape of the convolution kernel, and the remote contextual features dependency relationship is not fully utilized. In view of these problems, an improved DLinkNet is proposed in this paper. Firstly, a convolutional layer which fuses information of multiple scales is used to replace the InitBlock in the front of the network. Secondly, instead of using the D-Block, the DenseRe-Block is applied to the center structure of DLinkNet. The experimental results show that the improved network has a higher IoU score than DLinkNet when extracting roads from optical images in both city and mountain town areas.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS47720.2021.9553728</doi><tpages>4</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2153-7003 |
ispartof | 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, p.4664-4667 |
issn | 2153-7003 |
language | eng |
recordid | cdi_ieee_primary_9553728 |
source | IEEE Xplore All Conference Series |
subjects | Convolution DenseRe-Block DLinkNet Feature extraction Image Processing Optical fiber networks Remote Sensing Road Extraction Roads Satellites Shape Urban areas |
title | Re-DLinkNet: Based on DLinkNet and ReNet for Road Extraction from High Resolution Satellite Imagery |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T22%3A36%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Re-DLinkNet:%20Based%20on%20DLinkNet%20and%20ReNet%20for%20Road%20Extraction%20from%20High%20Resolution%20Satellite%20Imagery&rft.btitle=2021%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium%20IGARSS&rft.au=Wang,%20Yuchuan&rft.date=2021-07-11&rft.spage=4664&rft.epage=4667&rft.pages=4664-4667&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS47720.2021.9553728&rft.eisbn=9781665403696&rft.eisbn_list=1665403691&rft_dat=%3Cieee_CHZPO%3E9553728%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-4e9ccb9d120a27a74ff7c5b6ce6f1039e3605e0442005e1eafe39d00208f486f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9553728&rfr_iscdi=true |