Loading…

Towards Enabling Deep Learning-Based Question-Answering for 3D Lidar Point Clouds

Remote sensing lidar point cloud dataset embeds inherent 3D topological, topographical and complex geometrical information which possess immense potential in applications involving machine-understandable 3D perception. The lidar point clouds are unstructured, unlike images, and hence are challenging...

Full description

Saved in:
Bibliographic Details
Main Authors: Shinde, Rajat C., Durbha, Surya S, Potnis, Abhishek V., Talreja, Pratyush, Singh, Gaganpreet
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 6939
container_issue
container_start_page 6936
container_title
container_volume
creator Shinde, Rajat C.
Durbha, Surya S
Potnis, Abhishek V.
Talreja, Pratyush
Singh, Gaganpreet
description Remote sensing lidar point cloud dataset embeds inherent 3D topological, topographical and complex geometrical information which possess immense potential in applications involving machine-understandable 3D perception. The lidar point clouds are unstructured, unlike images, and hence are challenging to process. In our work, we are exploring the possibility of deep learning-based question-answering on the lidar 3D point clouds. We are proposing a deep CNN-RNN parallel architecture to learn lidar point cloud features and word embedding from the questions and fuse them to form a feature mapping for generating answers. We have restricted our experiments for the urban domain and present preliminary results of binary question-answering (yes/no) using the urban lidar point clouds based on the perplexity, edit distance, evaluation loss, and sequence accuracy as the performance metrics. Our proposed hypothesis of lidar question-answering is the first attempt, to the best of our knowledge, and we envisage that our novel work could be a foundation in using lidar point clouds for enhanced 3D perception in an urban environment. We envisage that our proposed lidar question-answering could be extended for machine comprehension-based applications such as rendering lidar scene descriptions and content-based 3D scene retrieval.
doi_str_mv 10.1109/IGARSS47720.2021.9553785
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9553785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9553785</ieee_id><sourcerecordid>9553785</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-ceb71a316a9dc5fd1da45220b9c546306b9d2cc11f6aca36205c93b1fa7c38f73</originalsourceid><addsrcrecordid>eNotkNFKwzAYhaMgOOeewJu8QGf-pEmay9rNOSjo3Lwef5NUIrUdScfw7Z24q3M-OHwXhxAKbA7AzON6Vb5vt7nWnM054zA3UgpdyCsyM7oApWTOhDLqmkw4SJFpxsQtuUvp61wKztiEbHbDCaNLdNlj04X-ky68P9DaY-zPlD1h8o5ujj6NYeizsk8nH_9m7RCpWNA6OIz0bQj9SKtuOLp0T25a7JKfXXJKPp6Xu-olq19X66qsswBQjJn1jQYUoNA4K1sHDnPJOWuMlbkSTDXGcWsBWoUWheJMWiMaaFFbUbRaTMnDvzd47_eHGL4x_uwvD4hfKaJQ2Q</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Towards Enabling Deep Learning-Based Question-Answering for 3D Lidar Point Clouds</title><source>IEEE Xplore All Conference Series</source><creator>Shinde, Rajat C. ; Durbha, Surya S ; Potnis, Abhishek V. ; Talreja, Pratyush ; Singh, Gaganpreet</creator><creatorcontrib>Shinde, Rajat C. ; Durbha, Surya S ; Potnis, Abhishek V. ; Talreja, Pratyush ; Singh, Gaganpreet</creatorcontrib><description>Remote sensing lidar point cloud dataset embeds inherent 3D topological, topographical and complex geometrical information which possess immense potential in applications involving machine-understandable 3D perception. The lidar point clouds are unstructured, unlike images, and hence are challenging to process. In our work, we are exploring the possibility of deep learning-based question-answering on the lidar 3D point clouds. We are proposing a deep CNN-RNN parallel architecture to learn lidar point cloud features and word embedding from the questions and fuse them to form a feature mapping for generating answers. We have restricted our experiments for the urban domain and present preliminary results of binary question-answering (yes/no) using the urban lidar point clouds based on the perplexity, edit distance, evaluation loss, and sequence accuracy as the performance metrics. Our proposed hypothesis of lidar question-answering is the first attempt, to the best of our knowledge, and we envisage that our novel work could be a foundation in using lidar point clouds for enhanced 3D perception in an urban environment. We envisage that our proposed lidar question-answering could be extended for machine comprehension-based applications such as rendering lidar scene descriptions and content-based 3D scene retrieval.</description><identifier>EISSN: 2153-7003</identifier><identifier>EISBN: 9781665403696</identifier><identifier>EISBN: 1665403691</identifier><identifier>DOI: 10.1109/IGARSS47720.2021.9553785</identifier><language>eng</language><publisher>IEEE</publisher><subject>3D urban perception ; deep learning ; Feature extraction ; Laser radar ; lidar question-answering ; Measurement ; Rendering (computer graphics) ; Solid modeling ; Three-dimensional displays ; towards scene retrieval ; Urban areas</subject><ispartof>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, p.6936-6939</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9553785$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9553785$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shinde, Rajat C.</creatorcontrib><creatorcontrib>Durbha, Surya S</creatorcontrib><creatorcontrib>Potnis, Abhishek V.</creatorcontrib><creatorcontrib>Talreja, Pratyush</creatorcontrib><creatorcontrib>Singh, Gaganpreet</creatorcontrib><title>Towards Enabling Deep Learning-Based Question-Answering for 3D Lidar Point Clouds</title><title>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS</title><addtitle>IGARSS</addtitle><description>Remote sensing lidar point cloud dataset embeds inherent 3D topological, topographical and complex geometrical information which possess immense potential in applications involving machine-understandable 3D perception. The lidar point clouds are unstructured, unlike images, and hence are challenging to process. In our work, we are exploring the possibility of deep learning-based question-answering on the lidar 3D point clouds. We are proposing a deep CNN-RNN parallel architecture to learn lidar point cloud features and word embedding from the questions and fuse them to form a feature mapping for generating answers. We have restricted our experiments for the urban domain and present preliminary results of binary question-answering (yes/no) using the urban lidar point clouds based on the perplexity, edit distance, evaluation loss, and sequence accuracy as the performance metrics. Our proposed hypothesis of lidar question-answering is the first attempt, to the best of our knowledge, and we envisage that our novel work could be a foundation in using lidar point clouds for enhanced 3D perception in an urban environment. We envisage that our proposed lidar question-answering could be extended for machine comprehension-based applications such as rendering lidar scene descriptions and content-based 3D scene retrieval.</description><subject>3D urban perception</subject><subject>deep learning</subject><subject>Feature extraction</subject><subject>Laser radar</subject><subject>lidar question-answering</subject><subject>Measurement</subject><subject>Rendering (computer graphics)</subject><subject>Solid modeling</subject><subject>Three-dimensional displays</subject><subject>towards scene retrieval</subject><subject>Urban areas</subject><issn>2153-7003</issn><isbn>9781665403696</isbn><isbn>1665403691</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotkNFKwzAYhaMgOOeewJu8QGf-pEmay9rNOSjo3Lwef5NUIrUdScfw7Z24q3M-OHwXhxAKbA7AzON6Vb5vt7nWnM054zA3UgpdyCsyM7oApWTOhDLqmkw4SJFpxsQtuUvp61wKztiEbHbDCaNLdNlj04X-ky68P9DaY-zPlD1h8o5ujj6NYeizsk8nH_9m7RCpWNA6OIz0bQj9SKtuOLp0T25a7JKfXXJKPp6Xu-olq19X66qsswBQjJn1jQYUoNA4K1sHDnPJOWuMlbkSTDXGcWsBWoUWheJMWiMaaFFbUbRaTMnDvzd47_eHGL4x_uwvD4hfKaJQ2Q</recordid><startdate>20210711</startdate><enddate>20210711</enddate><creator>Shinde, Rajat C.</creator><creator>Durbha, Surya S</creator><creator>Potnis, Abhishek V.</creator><creator>Talreja, Pratyush</creator><creator>Singh, Gaganpreet</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210711</creationdate><title>Towards Enabling Deep Learning-Based Question-Answering for 3D Lidar Point Clouds</title><author>Shinde, Rajat C. ; Durbha, Surya S ; Potnis, Abhishek V. ; Talreja, Pratyush ; Singh, Gaganpreet</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-ceb71a316a9dc5fd1da45220b9c546306b9d2cc11f6aca36205c93b1fa7c38f73</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>3D urban perception</topic><topic>deep learning</topic><topic>Feature extraction</topic><topic>Laser radar</topic><topic>lidar question-answering</topic><topic>Measurement</topic><topic>Rendering (computer graphics)</topic><topic>Solid modeling</topic><topic>Three-dimensional displays</topic><topic>towards scene retrieval</topic><topic>Urban areas</topic><toplevel>online_resources</toplevel><creatorcontrib>Shinde, Rajat C.</creatorcontrib><creatorcontrib>Durbha, Surya S</creatorcontrib><creatorcontrib>Potnis, Abhishek V.</creatorcontrib><creatorcontrib>Talreja, Pratyush</creatorcontrib><creatorcontrib>Singh, Gaganpreet</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore (Online service)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shinde, Rajat C.</au><au>Durbha, Surya S</au><au>Potnis, Abhishek V.</au><au>Talreja, Pratyush</au><au>Singh, Gaganpreet</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Towards Enabling Deep Learning-Based Question-Answering for 3D Lidar Point Clouds</atitle><btitle>2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS</btitle><stitle>IGARSS</stitle><date>2021-07-11</date><risdate>2021</risdate><spage>6936</spage><epage>6939</epage><pages>6936-6939</pages><eissn>2153-7003</eissn><eisbn>9781665403696</eisbn><eisbn>1665403691</eisbn><abstract>Remote sensing lidar point cloud dataset embeds inherent 3D topological, topographical and complex geometrical information which possess immense potential in applications involving machine-understandable 3D perception. The lidar point clouds are unstructured, unlike images, and hence are challenging to process. In our work, we are exploring the possibility of deep learning-based question-answering on the lidar 3D point clouds. We are proposing a deep CNN-RNN parallel architecture to learn lidar point cloud features and word embedding from the questions and fuse them to form a feature mapping for generating answers. We have restricted our experiments for the urban domain and present preliminary results of binary question-answering (yes/no) using the urban lidar point clouds based on the perplexity, edit distance, evaluation loss, and sequence accuracy as the performance metrics. Our proposed hypothesis of lidar question-answering is the first attempt, to the best of our knowledge, and we envisage that our novel work could be a foundation in using lidar point clouds for enhanced 3D perception in an urban environment. We envisage that our proposed lidar question-answering could be extended for machine comprehension-based applications such as rendering lidar scene descriptions and content-based 3D scene retrieval.</abstract><pub>IEEE</pub><doi>10.1109/IGARSS47720.2021.9553785</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2153-7003
ispartof 2021 IEEE International Geoscience and Remote Sensing Symposium IGARSS, 2021, p.6936-6939
issn 2153-7003
language eng
recordid cdi_ieee_primary_9553785
source IEEE Xplore All Conference Series
subjects 3D urban perception
deep learning
Feature extraction
Laser radar
lidar question-answering
Measurement
Rendering (computer graphics)
Solid modeling
Three-dimensional displays
towards scene retrieval
Urban areas
title Towards Enabling Deep Learning-Based Question-Answering for 3D Lidar Point Clouds
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T12%3A55%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Towards%20Enabling%20Deep%20Learning-Based%20Question-Answering%20for%203D%20Lidar%20Point%20Clouds&rft.btitle=2021%20IEEE%20International%20Geoscience%20and%20Remote%20Sensing%20Symposium%20IGARSS&rft.au=Shinde,%20Rajat%20C.&rft.date=2021-07-11&rft.spage=6936&rft.epage=6939&rft.pages=6936-6939&rft.eissn=2153-7003&rft_id=info:doi/10.1109/IGARSS47720.2021.9553785&rft.eisbn=9781665403696&rft.eisbn_list=1665403691&rft_dat=%3Cieee_CHZPO%3E9553785%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-ceb71a316a9dc5fd1da45220b9c546306b9d2cc11f6aca36205c93b1fa7c38f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9553785&rfr_iscdi=true