Loading…

MAFIA: Machine Learning Acceleration on FPGAs for IoT Applications

Recent breakthroughs in ML have produced new classes of models that allow ML inference to run directly on milliwatt-powered IoT devices. On one hand, existing ML-to-FPGA compilers are designed for deep neural-networks on large FPGAs. On the other hand, general-purpose HLS tools fail to exploit prope...

Full description

Saved in:
Bibliographic Details
Main Authors: Ghanathe, Nikhil P, Seshadri, Vivek, Sharma, Rahul, Wilton, Steve, Kumar, Aayan
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 354
container_issue
container_start_page 347
container_title
container_volume
creator Ghanathe, Nikhil P
Seshadri, Vivek
Sharma, Rahul
Wilton, Steve
Kumar, Aayan
description Recent breakthroughs in ML have produced new classes of models that allow ML inference to run directly on milliwatt-powered IoT devices. On one hand, existing ML-to-FPGA compilers are designed for deep neural-networks on large FPGAs. On the other hand, general-purpose HLS tools fail to exploit properties specific to ML inference, thereby resulting in suboptimal performance. We propose MAFIA, a tool to compile ML inference on small form-factor FPGAs for IoT applications. MAFIA provides native support for linear algebra operations and can express a variety of ML algorithms, including state-of-the-art models. We show that MAFIA-generated programs outperform best-performing variant of a commercial HLS compiler by 2.5 × on average.
doi_str_mv 10.1109/FPL53798.2021.00067
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9556450</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9556450</ieee_id><sourcerecordid>9556450</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-318fd8559df0829d232ac4b42c81f6e73088c3c692b0fc25f91e6cfb0f91f5133</originalsourceid><addsrcrecordid>eNotjFFLwzAUhaMgOOd-wV7yB1rvTXLTxLc47Cx0uIf5PLo00UhtS7sX_71DhQOHj_NxGFsj5IhgH8p9TbKwJhcgMAcAXVyxO9SalCzI6mu2QKt0hsqYW7aa58-LA6QKQ3rBnnaurNwj3zX-I_WB16GZ-tS_c-d96MLUnNPQ80vK_dbNPA4Tr4YDd-PYJf87zvfsJjbdHFb_vWRv5fNh85LVr9tq4-osCZDnTKKJrSGybQQjbCukaLw6KeENRh0KCcZ46bUVJ4heULQYtI8XsBgJpVyy9d9vCiEcxyl9NdP30RJpRSB_AJWTSJ4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>MAFIA: Machine Learning Acceleration on FPGAs for IoT Applications</title><source>IEEE Xplore All Conference Series</source><creator>Ghanathe, Nikhil P ; Seshadri, Vivek ; Sharma, Rahul ; Wilton, Steve ; Kumar, Aayan</creator><creatorcontrib>Ghanathe, Nikhil P ; Seshadri, Vivek ; Sharma, Rahul ; Wilton, Steve ; Kumar, Aayan</creatorcontrib><description>Recent breakthroughs in ML have produced new classes of models that allow ML inference to run directly on milliwatt-powered IoT devices. On one hand, existing ML-to-FPGA compilers are designed for deep neural-networks on large FPGAs. On the other hand, general-purpose HLS tools fail to exploit properties specific to ML inference, thereby resulting in suboptimal performance. We propose MAFIA, a tool to compile ML inference on small form-factor FPGAs for IoT applications. MAFIA provides native support for linear algebra operations and can express a variety of ML algorithms, including state-of-the-art models. We show that MAFIA-generated programs outperform best-performing variant of a commercial HLS compiler by 2.5 × on average.</description><identifier>EISSN: 1946-1488</identifier><identifier>EISBN: 1665437596</identifier><identifier>EISBN: 9781665437592</identifier><identifier>DOI: 10.1109/FPL53798.2021.00067</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Compiler ; FPGA ; Hardware Acceleration ; High level synthesis ; Internet of Things ; Linear algebra ; Machine learning ; Machine learning algorithms ; Machine learning Inference ; Neural networks ; Performance evaluation ; Program processors ; Resource constrained devices</subject><ispartof>2021 31st International Conference on Field-Programmable Logic and Applications (FPL), 2021, p.347-354</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9556450$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9556450$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ghanathe, Nikhil P</creatorcontrib><creatorcontrib>Seshadri, Vivek</creatorcontrib><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Wilton, Steve</creatorcontrib><creatorcontrib>Kumar, Aayan</creatorcontrib><title>MAFIA: Machine Learning Acceleration on FPGAs for IoT Applications</title><title>2021 31st International Conference on Field-Programmable Logic and Applications (FPL)</title><addtitle>FPL</addtitle><description>Recent breakthroughs in ML have produced new classes of models that allow ML inference to run directly on milliwatt-powered IoT devices. On one hand, existing ML-to-FPGA compilers are designed for deep neural-networks on large FPGAs. On the other hand, general-purpose HLS tools fail to exploit properties specific to ML inference, thereby resulting in suboptimal performance. We propose MAFIA, a tool to compile ML inference on small form-factor FPGAs for IoT applications. MAFIA provides native support for linear algebra operations and can express a variety of ML algorithms, including state-of-the-art models. We show that MAFIA-generated programs outperform best-performing variant of a commercial HLS compiler by 2.5 × on average.</description><subject>Compiler</subject><subject>FPGA</subject><subject>Hardware Acceleration</subject><subject>High level synthesis</subject><subject>Internet of Things</subject><subject>Linear algebra</subject><subject>Machine learning</subject><subject>Machine learning algorithms</subject><subject>Machine learning Inference</subject><subject>Neural networks</subject><subject>Performance evaluation</subject><subject>Program processors</subject><subject>Resource constrained devices</subject><issn>1946-1488</issn><isbn>1665437596</isbn><isbn>9781665437592</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjFFLwzAUhaMgOOd-wV7yB1rvTXLTxLc47Cx0uIf5PLo00UhtS7sX_71DhQOHj_NxGFsj5IhgH8p9TbKwJhcgMAcAXVyxO9SalCzI6mu2QKt0hsqYW7aa58-LA6QKQ3rBnnaurNwj3zX-I_WB16GZ-tS_c-d96MLUnNPQ80vK_dbNPA4Tr4YDd-PYJf87zvfsJjbdHFb_vWRv5fNh85LVr9tq4-osCZDnTKKJrSGybQQjbCukaLw6KeENRh0KCcZ46bUVJ4heULQYtI8XsBgJpVyy9d9vCiEcxyl9NdP30RJpRSB_AJWTSJ4</recordid><startdate>202108</startdate><enddate>202108</enddate><creator>Ghanathe, Nikhil P</creator><creator>Seshadri, Vivek</creator><creator>Sharma, Rahul</creator><creator>Wilton, Steve</creator><creator>Kumar, Aayan</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202108</creationdate><title>MAFIA: Machine Learning Acceleration on FPGAs for IoT Applications</title><author>Ghanathe, Nikhil P ; Seshadri, Vivek ; Sharma, Rahul ; Wilton, Steve ; Kumar, Aayan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-318fd8559df0829d232ac4b42c81f6e73088c3c692b0fc25f91e6cfb0f91f5133</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Compiler</topic><topic>FPGA</topic><topic>Hardware Acceleration</topic><topic>High level synthesis</topic><topic>Internet of Things</topic><topic>Linear algebra</topic><topic>Machine learning</topic><topic>Machine learning algorithms</topic><topic>Machine learning Inference</topic><topic>Neural networks</topic><topic>Performance evaluation</topic><topic>Program processors</topic><topic>Resource constrained devices</topic><toplevel>online_resources</toplevel><creatorcontrib>Ghanathe, Nikhil P</creatorcontrib><creatorcontrib>Seshadri, Vivek</creatorcontrib><creatorcontrib>Sharma, Rahul</creatorcontrib><creatorcontrib>Wilton, Steve</creatorcontrib><creatorcontrib>Kumar, Aayan</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ghanathe, Nikhil P</au><au>Seshadri, Vivek</au><au>Sharma, Rahul</au><au>Wilton, Steve</au><au>Kumar, Aayan</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>MAFIA: Machine Learning Acceleration on FPGAs for IoT Applications</atitle><btitle>2021 31st International Conference on Field-Programmable Logic and Applications (FPL)</btitle><stitle>FPL</stitle><date>2021-08</date><risdate>2021</risdate><spage>347</spage><epage>354</epage><pages>347-354</pages><eissn>1946-1488</eissn><eisbn>1665437596</eisbn><eisbn>9781665437592</eisbn><coden>IEEPAD</coden><abstract>Recent breakthroughs in ML have produced new classes of models that allow ML inference to run directly on milliwatt-powered IoT devices. On one hand, existing ML-to-FPGA compilers are designed for deep neural-networks on large FPGAs. On the other hand, general-purpose HLS tools fail to exploit properties specific to ML inference, thereby resulting in suboptimal performance. We propose MAFIA, a tool to compile ML inference on small form-factor FPGAs for IoT applications. MAFIA provides native support for linear algebra operations and can express a variety of ML algorithms, including state-of-the-art models. We show that MAFIA-generated programs outperform best-performing variant of a commercial HLS compiler by 2.5 × on average.</abstract><pub>IEEE</pub><doi>10.1109/FPL53798.2021.00067</doi><tpages>8</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 1946-1488
ispartof 2021 31st International Conference on Field-Programmable Logic and Applications (FPL), 2021, p.347-354
issn 1946-1488
language eng
recordid cdi_ieee_primary_9556450
source IEEE Xplore All Conference Series
subjects Compiler
FPGA
Hardware Acceleration
High level synthesis
Internet of Things
Linear algebra
Machine learning
Machine learning algorithms
Machine learning Inference
Neural networks
Performance evaluation
Program processors
Resource constrained devices
title MAFIA: Machine Learning Acceleration on FPGAs for IoT Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T14%3A30%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=MAFIA:%20Machine%20Learning%20Acceleration%20on%20FPGAs%20for%20IoT%20Applications&rft.btitle=2021%2031st%20International%20Conference%20on%20Field-Programmable%20Logic%20and%20Applications%20(FPL)&rft.au=Ghanathe,%20Nikhil%20P&rft.date=2021-08&rft.spage=347&rft.epage=354&rft.pages=347-354&rft.eissn=1946-1488&rft.coden=IEEPAD&rft_id=info:doi/10.1109/FPL53798.2021.00067&rft.eisbn=1665437596&rft.eisbn_list=9781665437592&rft_dat=%3Cieee_CHZPO%3E9556450%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-318fd8559df0829d232ac4b42c81f6e73088c3c692b0fc25f91e6cfb0f91f5133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9556450&rfr_iscdi=true