Loading…
Damping of Oscillations by Weak Nonlinear Regulator with Extended Range of Quality Control
Control problems for objects prone to oscillations in automatic control systems often arise in practice. In some confirmed cases, for almost linear systems it is useful to use linear regulators, otherwise, control objects are nonlinear. Moreover, its nonlinearity cannot be fully compensated by inver...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Control problems for objects prone to oscillations in automatic control systems often arise in practice. In some confirmed cases, for almost linear systems it is useful to use linear regulators, otherwise, control objects are nonlinear. Moreover, its nonlinearity cannot be fully compensated by inverse nonlinearity at the object input. In a low-signal mode, transient processes in nonlinear systems can be ideal, but with small changes in the input amplitude, the transient processes can become unstable without a qualitative change in the state. The methodology for ensuring parametric invariance is actively developing. In particular, numerical methods are designing to ensure parametric invariance for systems with indefinitely mathematical descriptions. This paper offers two options for solving the problem of ensuring parametric invariance, which makes it possible to find a parametric synthesis of the system and find some compromise version of the regulation for extended input amplitude ranges. The proposed method is investigated by numerical simulation, and its effectiveness has been demonstrated. |
---|---|
ISSN: | 2768-0797 |
DOI: | 10.1109/UralCon52005.2021.9559427 |