Loading…
Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments
Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative p...
Saved in:
Main Authors: | , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 10263 |
container_issue | |
container_start_page | 10257 |
container_title | |
container_volume | |
creator | Huang, Hung-Jui Huang, Kai-Chi Cap, Michal Zhao, Yibiao Wu, Ying Nian Baker, Chris L. |
description | Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a system's risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck. |
doi_str_mv | 10.1109/ICRA48506.2021.9561745 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9561745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9561745</ieee_id><sourcerecordid>9561745</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-5dc5281b9d8f98bc70f6b393f02167833bf137ee37452648c43026410031efbf3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhaMguE1_gSC51IvWN0mbD-9mnToYOqaCdyNpkxFtU2lqYf_egsOr5-ocznMQuiSQEgLqZlls5pnMgacUKElVzonI8iM0JYJKokAIOEYTmguRgBQfp2ga4ycAMMb5BOl1rUPwYYfbgDW-2vj4dY3vfqqd7W_xq3YWP7chKdoQbTfo3g8W_0d8wOuuNdr42sfel_h-H3QzchEG37WhsaGPZ-jE6Tra8wNn6P1h8VY8JauXx2UxXyWeAuuTvCrzca9RlXRKmlKA44Yp5kYpLiRjxhEmrGWjHOWZLDMGI8koQqwzjs3QxV-vt9Zuvzvf6G6_PdzBfgFtV1Rz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments</title><source>IEEE Xplore All Conference Series</source><creator>Huang, Hung-Jui ; Huang, Kai-Chi ; Cap, Michal ; Zhao, Yibiao ; Wu, Ying Nian ; Baker, Chris L.</creator><creatorcontrib>Huang, Hung-Jui ; Huang, Kai-Chi ; Cap, Michal ; Zhao, Yibiao ; Wu, Ying Nian ; Baker, Chris L.</creatorcontrib><description>Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a system's risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck.</description><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1728190770</identifier><identifier>EISBN: 9781728190778</identifier><identifier>DOI: 10.1109/ICRA48506.2021.9561745</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Heuristic algorithms ; Planning ; Probabilistic logic ; Safety ; Upper bound ; Vehicle dynamics</subject><ispartof>2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, p.10257-10263</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9561745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9561745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Hung-Jui</creatorcontrib><creatorcontrib>Huang, Kai-Chi</creatorcontrib><creatorcontrib>Cap, Michal</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Wu, Ying Nian</creatorcontrib><creatorcontrib>Baker, Chris L.</creatorcontrib><title>Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments</title><title>2021 IEEE International Conference on Robotics and Automation (ICRA)</title><addtitle>ICRA</addtitle><description>Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a system's risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck.</description><subject>Conferences</subject><subject>Heuristic algorithms</subject><subject>Planning</subject><subject>Probabilistic logic</subject><subject>Safety</subject><subject>Upper bound</subject><subject>Vehicle dynamics</subject><issn>2577-087X</issn><isbn>1728190770</isbn><isbn>9781728190778</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kF1LwzAYhaMguE1_gSC51IvWN0mbD-9mnToYOqaCdyNpkxFtU2lqYf_egsOr5-ocznMQuiSQEgLqZlls5pnMgacUKElVzonI8iM0JYJKokAIOEYTmguRgBQfp2ga4ycAMMb5BOl1rUPwYYfbgDW-2vj4dY3vfqqd7W_xq3YWP7chKdoQbTfo3g8W_0d8wOuuNdr42sfel_h-H3QzchEG37WhsaGPZ-jE6Tra8wNn6P1h8VY8JauXx2UxXyWeAuuTvCrzca9RlXRKmlKA44Yp5kYpLiRjxhEmrGWjHOWZLDMGI8koQqwzjs3QxV-vt9Zuvzvf6G6_PdzBfgFtV1Rz</recordid><startdate>20210530</startdate><enddate>20210530</enddate><creator>Huang, Hung-Jui</creator><creator>Huang, Kai-Chi</creator><creator>Cap, Michal</creator><creator>Zhao, Yibiao</creator><creator>Wu, Ying Nian</creator><creator>Baker, Chris L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210530</creationdate><title>Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments</title><author>Huang, Hung-Jui ; Huang, Kai-Chi ; Cap, Michal ; Zhao, Yibiao ; Wu, Ying Nian ; Baker, Chris L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-5dc5281b9d8f98bc70f6b393f02167833bf137ee37452648c43026410031efbf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conferences</topic><topic>Heuristic algorithms</topic><topic>Planning</topic><topic>Probabilistic logic</topic><topic>Safety</topic><topic>Upper bound</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hung-Jui</creatorcontrib><creatorcontrib>Huang, Kai-Chi</creatorcontrib><creatorcontrib>Cap, Michal</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Wu, Ying Nian</creatorcontrib><creatorcontrib>Baker, Chris L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Hung-Jui</au><au>Huang, Kai-Chi</au><au>Cap, Michal</au><au>Zhao, Yibiao</au><au>Wu, Ying Nian</au><au>Baker, Chris L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments</atitle><btitle>2021 IEEE International Conference on Robotics and Automation (ICRA)</btitle><stitle>ICRA</stitle><date>2021-05-30</date><risdate>2021</risdate><spage>10257</spage><epage>10263</epage><pages>10257-10263</pages><eissn>2577-087X</eissn><eisbn>1728190770</eisbn><eisbn>9781728190778</eisbn><abstract>Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a system's risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck.</abstract><pub>IEEE</pub><doi>10.1109/ICRA48506.2021.9561745</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2577-087X |
ispartof | 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, p.10257-10263 |
issn | 2577-087X |
language | eng |
recordid | cdi_ieee_primary_9561745 |
source | IEEE Xplore All Conference Series |
subjects | Conferences Heuristic algorithms Planning Probabilistic logic Safety Upper bound Vehicle dynamics |
title | Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Planning%20on%20a%20(Risk)%20Budget:%20Safe%20Non-Conservative%20Planning%20in%20Probabilistic%20Dynamic%20Environments&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)&rft.au=Huang,%20Hung-Jui&rft.date=2021-05-30&rft.spage=10257&rft.epage=10263&rft.pages=10257-10263&rft.eissn=2577-087X&rft_id=info:doi/10.1109/ICRA48506.2021.9561745&rft.eisbn=1728190770&rft.eisbn_list=9781728190778&rft_dat=%3Cieee_CHZPO%3E9561745%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-5dc5281b9d8f98bc70f6b393f02167833bf137ee37452648c43026410031efbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9561745&rfr_iscdi=true |