Loading…

Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments

Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative p...

Full description

Saved in:
Bibliographic Details
Main Authors: Huang, Hung-Jui, Huang, Kai-Chi, Cap, Michal, Zhao, Yibiao, Wu, Ying Nian, Baker, Chris L.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 10263
container_issue
container_start_page 10257
container_title
container_volume
creator Huang, Hung-Jui
Huang, Kai-Chi
Cap, Michal
Zhao, Yibiao
Wu, Ying Nian
Baker, Chris L.
description Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a system's risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck.
doi_str_mv 10.1109/ICRA48506.2021.9561745
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9561745</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9561745</ieee_id><sourcerecordid>9561745</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-5dc5281b9d8f98bc70f6b393f02167833bf137ee37452648c43026410031efbf3</originalsourceid><addsrcrecordid>eNo9kF1LwzAYhaMguE1_gSC51IvWN0mbD-9mnToYOqaCdyNpkxFtU2lqYf_egsOr5-ocznMQuiSQEgLqZlls5pnMgacUKElVzonI8iM0JYJKokAIOEYTmguRgBQfp2ga4ycAMMb5BOl1rUPwYYfbgDW-2vj4dY3vfqqd7W_xq3YWP7chKdoQbTfo3g8W_0d8wOuuNdr42sfel_h-H3QzchEG37WhsaGPZ-jE6Tra8wNn6P1h8VY8JauXx2UxXyWeAuuTvCrzca9RlXRKmlKA44Yp5kYpLiRjxhEmrGWjHOWZLDMGI8koQqwzjs3QxV-vt9Zuvzvf6G6_PdzBfgFtV1Rz</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments</title><source>IEEE Xplore All Conference Series</source><creator>Huang, Hung-Jui ; Huang, Kai-Chi ; Cap, Michal ; Zhao, Yibiao ; Wu, Ying Nian ; Baker, Chris L.</creator><creatorcontrib>Huang, Hung-Jui ; Huang, Kai-Chi ; Cap, Michal ; Zhao, Yibiao ; Wu, Ying Nian ; Baker, Chris L.</creatorcontrib><description>Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a system's risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck.</description><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1728190770</identifier><identifier>EISBN: 9781728190778</identifier><identifier>DOI: 10.1109/ICRA48506.2021.9561745</identifier><language>eng</language><publisher>IEEE</publisher><subject>Conferences ; Heuristic algorithms ; Planning ; Probabilistic logic ; Safety ; Upper bound ; Vehicle dynamics</subject><ispartof>2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, p.10257-10263</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9561745$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23929,23930,25139,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9561745$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Huang, Hung-Jui</creatorcontrib><creatorcontrib>Huang, Kai-Chi</creatorcontrib><creatorcontrib>Cap, Michal</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Wu, Ying Nian</creatorcontrib><creatorcontrib>Baker, Chris L.</creatorcontrib><title>Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments</title><title>2021 IEEE International Conference on Robotics and Automation (ICRA)</title><addtitle>ICRA</addtitle><description>Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a system's risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck.</description><subject>Conferences</subject><subject>Heuristic algorithms</subject><subject>Planning</subject><subject>Probabilistic logic</subject><subject>Safety</subject><subject>Upper bound</subject><subject>Vehicle dynamics</subject><issn>2577-087X</issn><isbn>1728190770</isbn><isbn>9781728190778</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo9kF1LwzAYhaMguE1_gSC51IvWN0mbD-9mnToYOqaCdyNpkxFtU2lqYf_egsOr5-ocznMQuiSQEgLqZlls5pnMgacUKElVzonI8iM0JYJKokAIOEYTmguRgBQfp2ga4ycAMMb5BOl1rUPwYYfbgDW-2vj4dY3vfqqd7W_xq3YWP7chKdoQbTfo3g8W_0d8wOuuNdr42sfel_h-H3QzchEG37WhsaGPZ-jE6Tra8wNn6P1h8VY8JauXx2UxXyWeAuuTvCrzca9RlXRKmlKA44Yp5kYpLiRjxhEmrGWjHOWZLDMGI8koQqwzjs3QxV-vt9Zuvzvf6G6_PdzBfgFtV1Rz</recordid><startdate>20210530</startdate><enddate>20210530</enddate><creator>Huang, Hung-Jui</creator><creator>Huang, Kai-Chi</creator><creator>Cap, Michal</creator><creator>Zhao, Yibiao</creator><creator>Wu, Ying Nian</creator><creator>Baker, Chris L.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210530</creationdate><title>Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments</title><author>Huang, Hung-Jui ; Huang, Kai-Chi ; Cap, Michal ; Zhao, Yibiao ; Wu, Ying Nian ; Baker, Chris L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-5dc5281b9d8f98bc70f6b393f02167833bf137ee37452648c43026410031efbf3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Conferences</topic><topic>Heuristic algorithms</topic><topic>Planning</topic><topic>Probabilistic logic</topic><topic>Safety</topic><topic>Upper bound</topic><topic>Vehicle dynamics</topic><toplevel>online_resources</toplevel><creatorcontrib>Huang, Hung-Jui</creatorcontrib><creatorcontrib>Huang, Kai-Chi</creatorcontrib><creatorcontrib>Cap, Michal</creatorcontrib><creatorcontrib>Zhao, Yibiao</creatorcontrib><creatorcontrib>Wu, Ying Nian</creatorcontrib><creatorcontrib>Baker, Chris L.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Huang, Hung-Jui</au><au>Huang, Kai-Chi</au><au>Cap, Michal</au><au>Zhao, Yibiao</au><au>Wu, Ying Nian</au><au>Baker, Chris L.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments</atitle><btitle>2021 IEEE International Conference on Robotics and Automation (ICRA)</btitle><stitle>ICRA</stitle><date>2021-05-30</date><risdate>2021</risdate><spage>10257</spage><epage>10263</epage><pages>10257-10263</pages><eissn>2577-087X</eissn><eisbn>1728190770</eisbn><eisbn>9781728190778</eisbn><abstract>Planning in environments with other agents whose future actions are uncertain often requires compromise between safety and performance. Here our goal is to design efficient planning algorithms with guaranteed bounds on the probability of safety violation, which nonetheless achieve non-conservative performance. To quantify a system's risk, we define a natural criterion called interval risk bounds (IRBs), which provide a parametric upper bound on the probability of safety violation over a given time interval or task. We present a novel receding horizon algorithm, and prove that it can satisfy a desired IRB. Our algorithm maintains a dynamic risk budget which constrains the allowable risk at each iteration, and guarantees recursive feasibility by requiring a safe set to be reachable by a contingency plan within the budget. We empirically demonstrate that our algorithm is both safer and less conservative than strong baselines in two simulated autonomous driving experiments in scenarios involving collision avoidance with other vehicles, and additionally demonstrate our algorithm running on an autonomous class 8 truck.</abstract><pub>IEEE</pub><doi>10.1109/ICRA48506.2021.9561745</doi><tpages>7</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2577-087X
ispartof 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, p.10257-10263
issn 2577-087X
language eng
recordid cdi_ieee_primary_9561745
source IEEE Xplore All Conference Series
subjects Conferences
Heuristic algorithms
Planning
Probabilistic logic
Safety
Upper bound
Vehicle dynamics
title Planning on a (Risk) Budget: Safe Non-Conservative Planning in Probabilistic Dynamic Environments
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A25%3A03IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Planning%20on%20a%20(Risk)%20Budget:%20Safe%20Non-Conservative%20Planning%20in%20Probabilistic%20Dynamic%20Environments&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)&rft.au=Huang,%20Hung-Jui&rft.date=2021-05-30&rft.spage=10257&rft.epage=10263&rft.pages=10257-10263&rft.eissn=2577-087X&rft_id=info:doi/10.1109/ICRA48506.2021.9561745&rft.eisbn=1728190770&rft.eisbn_list=9781728190778&rft_dat=%3Cieee_CHZPO%3E9561745%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-5dc5281b9d8f98bc70f6b393f02167833bf137ee37452648c43026410031efbf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9561745&rfr_iscdi=true