Loading…
Real-time Optimal Navigation Planning Using Learned Motion Costs
Navigation on challenging terrain topographies requires the understanding of robots' locomotion capabilities to produce optimal solutions. We present an integrated framework for real-time autonomous navigation of mobile robots based on elevation maps. The framework performs rapid global path pl...
Saved in:
Main Authors: | , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 9289 |
container_issue | |
container_start_page | 9283 |
container_title | |
container_volume | |
creator | Yang, Bowen Wellhausen, Lorenz Miki, Takahiro Liu, Ming Hutter, Marco |
description | Navigation on challenging terrain topographies requires the understanding of robots' locomotion capabilities to produce optimal solutions. We present an integrated framework for real-time autonomous navigation of mobile robots based on elevation maps. The framework performs rapid global path planning and optimization that is aware of the locomotion capabilities of the robot. A GPU-aided, sampling-based path planner combined with a gradient-based path optimizer provides optimal paths by using a neural network-based locomotion cost predictor which is trained in simulation. We show that our approach is capable of planning and optimizing paths three orders of magnitude faster than RRT* on GPU-enabled hardware, enabling real-time deployment on mobile platforms. We successfully evaluate the framework on the ANYmal C quadrupedal robot in both simulations and real-world environments for path planning tasks on multiple complex terrains. |
doi_str_mv | 10.1109/ICRA48506.2021.9561861 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9561861</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9561861</ieee_id><sourcerecordid>9561861</sourcerecordid><originalsourceid>FETCH-LOGICAL-i251t-e225a5b01f96fc8d702e274f480081227d0e9c1a18dbbb9ee5ea0f20520b67f43</originalsourceid><addsrcrecordid>eNotj91Kw0AQhVdBsK0-gSB5gcSZSfbvzhK0FqKVYsG7smlmy0pMSjYIvr1Ve3O-iwMf5whxi5Ahgr1blut5YSSojIAws1KhUXgmpqjJoAWt4VxMSGqdgtHvl2Ia4wcA5LlSE3G_ZtemY_jkZHU4wrXJi_sKezeGvkteW9d1odsnm_ibFbuh4yZ57v_aso9jvBIX3rWRr0-cic3jw1v5lFarxbKcV2kgiWPKRNLJGtBb5Xem0UBMuvCFATBIpBtgu0OHpqnr2jJLduAJJEGttC_ymbj59wZm3h6G49The3t6m_8AFU5Jhg</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Real-time Optimal Navigation Planning Using Learned Motion Costs</title><source>IEEE Xplore All Conference Series</source><creator>Yang, Bowen ; Wellhausen, Lorenz ; Miki, Takahiro ; Liu, Ming ; Hutter, Marco</creator><creatorcontrib>Yang, Bowen ; Wellhausen, Lorenz ; Miki, Takahiro ; Liu, Ming ; Hutter, Marco</creatorcontrib><description>Navigation on challenging terrain topographies requires the understanding of robots' locomotion capabilities to produce optimal solutions. We present an integrated framework for real-time autonomous navigation of mobile robots based on elevation maps. The framework performs rapid global path planning and optimization that is aware of the locomotion capabilities of the robot. A GPU-aided, sampling-based path planner combined with a gradient-based path optimizer provides optimal paths by using a neural network-based locomotion cost predictor which is trained in simulation. We show that our approach is capable of planning and optimizing paths three orders of magnitude faster than RRT* on GPU-enabled hardware, enabling real-time deployment on mobile platforms. We successfully evaluate the framework on the ANYmal C quadrupedal robot in both simulations and real-world environments for path planning tasks on multiple complex terrains.</description><identifier>EISSN: 2577-087X</identifier><identifier>EISBN: 1728190770</identifier><identifier>EISBN: 9781728190778</identifier><identifier>DOI: 10.1109/ICRA48506.2021.9561861</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Costs ; Navigation ; Real-time systems ; Sampling methods ; Surfaces ; Training data</subject><ispartof>2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, p.9283-9289</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9561861$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,23930,23931,25140,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9561861$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Yang, Bowen</creatorcontrib><creatorcontrib>Wellhausen, Lorenz</creatorcontrib><creatorcontrib>Miki, Takahiro</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><title>Real-time Optimal Navigation Planning Using Learned Motion Costs</title><title>2021 IEEE International Conference on Robotics and Automation (ICRA)</title><addtitle>ICRA</addtitle><description>Navigation on challenging terrain topographies requires the understanding of robots' locomotion capabilities to produce optimal solutions. We present an integrated framework for real-time autonomous navigation of mobile robots based on elevation maps. The framework performs rapid global path planning and optimization that is aware of the locomotion capabilities of the robot. A GPU-aided, sampling-based path planner combined with a gradient-based path optimizer provides optimal paths by using a neural network-based locomotion cost predictor which is trained in simulation. We show that our approach is capable of planning and optimizing paths three orders of magnitude faster than RRT* on GPU-enabled hardware, enabling real-time deployment on mobile platforms. We successfully evaluate the framework on the ANYmal C quadrupedal robot in both simulations and real-world environments for path planning tasks on multiple complex terrains.</description><subject>Computational modeling</subject><subject>Costs</subject><subject>Navigation</subject><subject>Real-time systems</subject><subject>Sampling methods</subject><subject>Surfaces</subject><subject>Training data</subject><issn>2577-087X</issn><isbn>1728190770</isbn><isbn>9781728190778</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj91Kw0AQhVdBsK0-gSB5gcSZSfbvzhK0FqKVYsG7smlmy0pMSjYIvr1Ve3O-iwMf5whxi5Ahgr1blut5YSSojIAws1KhUXgmpqjJoAWt4VxMSGqdgtHvl2Ia4wcA5LlSE3G_ZtemY_jkZHU4wrXJi_sKezeGvkteW9d1odsnm_ibFbuh4yZ57v_aso9jvBIX3rWRr0-cic3jw1v5lFarxbKcV2kgiWPKRNLJGtBb5Xem0UBMuvCFATBIpBtgu0OHpqnr2jJLduAJJEGttC_ymbj59wZm3h6G49The3t6m_8AFU5Jhg</recordid><startdate>20210530</startdate><enddate>20210530</enddate><creator>Yang, Bowen</creator><creator>Wellhausen, Lorenz</creator><creator>Miki, Takahiro</creator><creator>Liu, Ming</creator><creator>Hutter, Marco</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>20210530</creationdate><title>Real-time Optimal Navigation Planning Using Learned Motion Costs</title><author>Yang, Bowen ; Wellhausen, Lorenz ; Miki, Takahiro ; Liu, Ming ; Hutter, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i251t-e225a5b01f96fc8d702e274f480081227d0e9c1a18dbbb9ee5ea0f20520b67f43</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational modeling</topic><topic>Costs</topic><topic>Navigation</topic><topic>Real-time systems</topic><topic>Sampling methods</topic><topic>Surfaces</topic><topic>Training data</topic><toplevel>online_resources</toplevel><creatorcontrib>Yang, Bowen</creatorcontrib><creatorcontrib>Wellhausen, Lorenz</creatorcontrib><creatorcontrib>Miki, Takahiro</creatorcontrib><creatorcontrib>Liu, Ming</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Yang, Bowen</au><au>Wellhausen, Lorenz</au><au>Miki, Takahiro</au><au>Liu, Ming</au><au>Hutter, Marco</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Real-time Optimal Navigation Planning Using Learned Motion Costs</atitle><btitle>2021 IEEE International Conference on Robotics and Automation (ICRA)</btitle><stitle>ICRA</stitle><date>2021-05-30</date><risdate>2021</risdate><spage>9283</spage><epage>9289</epage><pages>9283-9289</pages><eissn>2577-087X</eissn><eisbn>1728190770</eisbn><eisbn>9781728190778</eisbn><abstract>Navigation on challenging terrain topographies requires the understanding of robots' locomotion capabilities to produce optimal solutions. We present an integrated framework for real-time autonomous navigation of mobile robots based on elevation maps. The framework performs rapid global path planning and optimization that is aware of the locomotion capabilities of the robot. A GPU-aided, sampling-based path planner combined with a gradient-based path optimizer provides optimal paths by using a neural network-based locomotion cost predictor which is trained in simulation. We show that our approach is capable of planning and optimizing paths three orders of magnitude faster than RRT* on GPU-enabled hardware, enabling real-time deployment on mobile platforms. We successfully evaluate the framework on the ANYmal C quadrupedal robot in both simulations and real-world environments for path planning tasks on multiple complex terrains.</abstract><pub>IEEE</pub><doi>10.1109/ICRA48506.2021.9561861</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2577-087X |
ispartof | 2021 IEEE International Conference on Robotics and Automation (ICRA), 2021, p.9283-9289 |
issn | 2577-087X |
language | eng |
recordid | cdi_ieee_primary_9561861 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Costs Navigation Real-time systems Sampling methods Surfaces Training data |
title | Real-time Optimal Navigation Planning Using Learned Motion Costs |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T09%3A17%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Real-time%20Optimal%20Navigation%20Planning%20Using%20Learned%20Motion%20Costs&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Robotics%20and%20Automation%20(ICRA)&rft.au=Yang,%20Bowen&rft.date=2021-05-30&rft.spage=9283&rft.epage=9289&rft.pages=9283-9289&rft.eissn=2577-087X&rft_id=info:doi/10.1109/ICRA48506.2021.9561861&rft.eisbn=1728190770&rft.eisbn_list=9781728190778&rft_dat=%3Cieee_CHZPO%3E9561861%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i251t-e225a5b01f96fc8d702e274f480081227d0e9c1a18dbbb9ee5ea0f20520b67f43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9561861&rfr_iscdi=true |