Loading…

Carrier Lifetime Stability of Boron-Doped Czochralski-Grown Silicon Materials for Years After Regeneration in an Industrial Belt Furnace

We examine the long-term stability of the carrier lifetime in boron-doped Czochralski-grown silicon materials with different boron and oxygen concentrations, which were regenerated in an industrial belt furnace. After firing and subsequent regeneration in an industrial conveyor-belt furnace, the sil...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of photovoltaics 2022-01, Vol.12 (1), p.198-203
Main Authors: Helmich, Lailah, Walter, Dominic, Pernau, Thomas, Schmidt, Jan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c299t-4675c329b3993fbc21f448b1c4246e0a138b5855199a7c3621030dabd9703f743
cites cdi_FETCH-LOGICAL-c299t-4675c329b3993fbc21f448b1c4246e0a138b5855199a7c3621030dabd9703f743
container_end_page 203
container_issue 1
container_start_page 198
container_title IEEE journal of photovoltaics
container_volume 12
creator Helmich, Lailah
Walter, Dominic
Pernau, Thomas
Schmidt, Jan
description We examine the long-term stability of the carrier lifetime in boron-doped Czochralski-grown silicon materials with different boron and oxygen concentrations, which were regenerated in an industrial belt furnace. After firing and subsequent regeneration in an industrial conveyor-belt furnace, the silicon samples are exposed to long-term illumination at an intensity of 0.1 suns and a sample temperature of about 30 °C for more than two years. After regeneration, we observe a minor re-degradation (30-72% reduced compared to the degradation observed without regeneration step). We attribute this re-degradation to a non-completed regeneration within the belt furnace due to the short regeneration period. Our results show that the industrial process consisting of firing with subsequent regeneration in the same unit is very effective for industrially relevant silicon materials. Typical industrial silicon wafers with a resistivity of (1.75 ± 0.03) Ωcm and an interstitial oxygen concentration of (6.9 ± 0.3) × 10 17 cm -3 show lifetimes larger than 2 ms after regeneration and two years of light exposure.
doi_str_mv 10.1109/JPHOTOV.2021.3116019
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9585483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9585483</ieee_id><sourcerecordid>2612470615</sourcerecordid><originalsourceid>FETCH-LOGICAL-c299t-4675c329b3993fbc21f448b1c4246e0a138b5855199a7c3621030dabd9703f743</originalsourceid><addsrcrecordid>eNo9kN1KAzEQhRdRUNQn0IuA11szSTa7udT6T6XiH3i1ZNOJRuumJimiT-Bjm9Lq3Mww853DcIpiH-gAgKrDq5uL8f34ccAogwEHkBTUWrHFoJIlF5Sv_828gc1iN8ZXmkvSSkqxVfwMdQgOAxk5i8m9I7lLunNTl76It-TYB9-XJ36GEzL89uYl6Gl8c-V58J89ucuc8T251gmDyxdifSBPqEMkRzbvyC0-Y49BJ5cx1xPdk8t-Mo9pgZNjnCZyNg-9NrhTbNjsgLurvl08nJ3eDy_K0fj8cng0Kg1TKpVC1pXhTHVcKW47w8AK0XRgBBMSqQbedFVTVaCUrg2XDCinE91NVE25rQXfLg6WvrPgP-YYU_vqFx9MY8skMFFTCVWmxJIywccY0Laz4N51-GqBtovY21Xs7SL2dhV7lu0tZQ4R_yUqPyQazn8BtZZ_Eg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2612470615</pqid></control><display><type>article</type><title>Carrier Lifetime Stability of Boron-Doped Czochralski-Grown Silicon Materials for Years After Regeneration in an Industrial Belt Furnace</title><source>IEEE Xplore (Online service)</source><creator>Helmich, Lailah ; Walter, Dominic ; Pernau, Thomas ; Schmidt, Jan</creator><creatorcontrib>Helmich, Lailah ; Walter, Dominic ; Pernau, Thomas ; Schmidt, Jan</creatorcontrib><description>We examine the long-term stability of the carrier lifetime in boron-doped Czochralski-grown silicon materials with different boron and oxygen concentrations, which were regenerated in an industrial belt furnace. After firing and subsequent regeneration in an industrial conveyor-belt furnace, the silicon samples are exposed to long-term illumination at an intensity of 0.1 suns and a sample temperature of about 30 °C for more than two years. After regeneration, we observe a minor re-degradation (30-72% reduced compared to the degradation observed without regeneration step). We attribute this re-degradation to a non-completed regeneration within the belt furnace due to the short regeneration period. Our results show that the industrial process consisting of firing with subsequent regeneration in the same unit is very effective for industrially relevant silicon materials. Typical industrial silicon wafers with a resistivity of (1.75 ± 0.03) Ωcm and an interstitial oxygen concentration of (6.9 ± 0.3) × 10 17 cm -3 show lifetimes larger than 2 ms after regeneration and two years of light exposure.</description><identifier>ISSN: 2156-3381</identifier><identifier>EISSN: 2156-3403</identifier><identifier>DOI: 10.1109/JPHOTOV.2021.3116019</identifier><identifier>CODEN: IJPEG8</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Annealing ; Belt conveyors ; Belts ; Boron ; Boron–oxygen (BO) defect ; Carrier lifetime ; Czochralski-grown silicon (Cz-Si) ; Degradation ; Furnaces ; light-induced degradation (LID) ; Lighting ; long-term stability ; Regeneration ; Silicon ; Silicon wafers ; Stability ; Sun ; Temperature measurement</subject><ispartof>IEEE journal of photovoltaics, 2022-01, Vol.12 (1), p.198-203</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c299t-4675c329b3993fbc21f448b1c4246e0a138b5855199a7c3621030dabd9703f743</citedby><cites>FETCH-LOGICAL-c299t-4675c329b3993fbc21f448b1c4246e0a138b5855199a7c3621030dabd9703f743</cites><orcidid>0000-0003-3945-255X ; 0000-0002-4851-4452</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9585483$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Helmich, Lailah</creatorcontrib><creatorcontrib>Walter, Dominic</creatorcontrib><creatorcontrib>Pernau, Thomas</creatorcontrib><creatorcontrib>Schmidt, Jan</creatorcontrib><title>Carrier Lifetime Stability of Boron-Doped Czochralski-Grown Silicon Materials for Years After Regeneration in an Industrial Belt Furnace</title><title>IEEE journal of photovoltaics</title><addtitle>JPHOTOV</addtitle><description>We examine the long-term stability of the carrier lifetime in boron-doped Czochralski-grown silicon materials with different boron and oxygen concentrations, which were regenerated in an industrial belt furnace. After firing and subsequent regeneration in an industrial conveyor-belt furnace, the silicon samples are exposed to long-term illumination at an intensity of 0.1 suns and a sample temperature of about 30 °C for more than two years. After regeneration, we observe a minor re-degradation (30-72% reduced compared to the degradation observed without regeneration step). We attribute this re-degradation to a non-completed regeneration within the belt furnace due to the short regeneration period. Our results show that the industrial process consisting of firing with subsequent regeneration in the same unit is very effective for industrially relevant silicon materials. Typical industrial silicon wafers with a resistivity of (1.75 ± 0.03) Ωcm and an interstitial oxygen concentration of (6.9 ± 0.3) × 10 17 cm -3 show lifetimes larger than 2 ms after regeneration and two years of light exposure.</description><subject>Annealing</subject><subject>Belt conveyors</subject><subject>Belts</subject><subject>Boron</subject><subject>Boron–oxygen (BO) defect</subject><subject>Carrier lifetime</subject><subject>Czochralski-grown silicon (Cz-Si)</subject><subject>Degradation</subject><subject>Furnaces</subject><subject>light-induced degradation (LID)</subject><subject>Lighting</subject><subject>long-term stability</subject><subject>Regeneration</subject><subject>Silicon</subject><subject>Silicon wafers</subject><subject>Stability</subject><subject>Sun</subject><subject>Temperature measurement</subject><issn>2156-3381</issn><issn>2156-3403</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kN1KAzEQhRdRUNQn0IuA11szSTa7udT6T6XiH3i1ZNOJRuumJimiT-Bjm9Lq3Mww853DcIpiH-gAgKrDq5uL8f34ccAogwEHkBTUWrHFoJIlF5Sv_828gc1iN8ZXmkvSSkqxVfwMdQgOAxk5i8m9I7lLunNTl76It-TYB9-XJ36GEzL89uYl6Gl8c-V58J89ucuc8T251gmDyxdifSBPqEMkRzbvyC0-Y49BJ5cx1xPdk8t-Mo9pgZNjnCZyNg-9NrhTbNjsgLurvl08nJ3eDy_K0fj8cng0Kg1TKpVC1pXhTHVcKW47w8AK0XRgBBMSqQbedFVTVaCUrg2XDCinE91NVE25rQXfLg6WvrPgP-YYU_vqFx9MY8skMFFTCVWmxJIywccY0Laz4N51-GqBtovY21Xs7SL2dhV7lu0tZQ4R_yUqPyQazn8BtZZ_Eg</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Helmich, Lailah</creator><creator>Walter, Dominic</creator><creator>Pernau, Thomas</creator><creator>Schmidt, Jan</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0003-3945-255X</orcidid><orcidid>https://orcid.org/0000-0002-4851-4452</orcidid></search><sort><creationdate>202201</creationdate><title>Carrier Lifetime Stability of Boron-Doped Czochralski-Grown Silicon Materials for Years After Regeneration in an Industrial Belt Furnace</title><author>Helmich, Lailah ; Walter, Dominic ; Pernau, Thomas ; Schmidt, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c299t-4675c329b3993fbc21f448b1c4246e0a138b5855199a7c3621030dabd9703f743</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Annealing</topic><topic>Belt conveyors</topic><topic>Belts</topic><topic>Boron</topic><topic>Boron–oxygen (BO) defect</topic><topic>Carrier lifetime</topic><topic>Czochralski-grown silicon (Cz-Si)</topic><topic>Degradation</topic><topic>Furnaces</topic><topic>light-induced degradation (LID)</topic><topic>Lighting</topic><topic>long-term stability</topic><topic>Regeneration</topic><topic>Silicon</topic><topic>Silicon wafers</topic><topic>Stability</topic><topic>Sun</topic><topic>Temperature measurement</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Helmich, Lailah</creatorcontrib><creatorcontrib>Walter, Dominic</creatorcontrib><creatorcontrib>Pernau, Thomas</creatorcontrib><creatorcontrib>Schmidt, Jan</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE journal of photovoltaics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Helmich, Lailah</au><au>Walter, Dominic</au><au>Pernau, Thomas</au><au>Schmidt, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Carrier Lifetime Stability of Boron-Doped Czochralski-Grown Silicon Materials for Years After Regeneration in an Industrial Belt Furnace</atitle><jtitle>IEEE journal of photovoltaics</jtitle><stitle>JPHOTOV</stitle><date>2022-01</date><risdate>2022</risdate><volume>12</volume><issue>1</issue><spage>198</spage><epage>203</epage><pages>198-203</pages><issn>2156-3381</issn><eissn>2156-3403</eissn><coden>IJPEG8</coden><abstract>We examine the long-term stability of the carrier lifetime in boron-doped Czochralski-grown silicon materials with different boron and oxygen concentrations, which were regenerated in an industrial belt furnace. After firing and subsequent regeneration in an industrial conveyor-belt furnace, the silicon samples are exposed to long-term illumination at an intensity of 0.1 suns and a sample temperature of about 30 °C for more than two years. After regeneration, we observe a minor re-degradation (30-72% reduced compared to the degradation observed without regeneration step). We attribute this re-degradation to a non-completed regeneration within the belt furnace due to the short regeneration period. Our results show that the industrial process consisting of firing with subsequent regeneration in the same unit is very effective for industrially relevant silicon materials. Typical industrial silicon wafers with a resistivity of (1.75 ± 0.03) Ωcm and an interstitial oxygen concentration of (6.9 ± 0.3) × 10 17 cm -3 show lifetimes larger than 2 ms after regeneration and two years of light exposure.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/JPHOTOV.2021.3116019</doi><tpages>6</tpages><orcidid>https://orcid.org/0000-0003-3945-255X</orcidid><orcidid>https://orcid.org/0000-0002-4851-4452</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2156-3381
ispartof IEEE journal of photovoltaics, 2022-01, Vol.12 (1), p.198-203
issn 2156-3381
2156-3403
language eng
recordid cdi_ieee_primary_9585483
source IEEE Xplore (Online service)
subjects Annealing
Belt conveyors
Belts
Boron
Boron–oxygen (BO) defect
Carrier lifetime
Czochralski-grown silicon (Cz-Si)
Degradation
Furnaces
light-induced degradation (LID)
Lighting
long-term stability
Regeneration
Silicon
Silicon wafers
Stability
Sun
Temperature measurement
title Carrier Lifetime Stability of Boron-Doped Czochralski-Grown Silicon Materials for Years After Regeneration in an Industrial Belt Furnace
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T15%3A41%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Carrier%20Lifetime%20Stability%20of%20Boron-Doped%20Czochralski-Grown%20Silicon%20Materials%20for%20Years%20After%20Regeneration%20in%20an%20Industrial%20Belt%20Furnace&rft.jtitle=IEEE%20journal%20of%20photovoltaics&rft.au=Helmich,%20Lailah&rft.date=2022-01&rft.volume=12&rft.issue=1&rft.spage=198&rft.epage=203&rft.pages=198-203&rft.issn=2156-3381&rft.eissn=2156-3403&rft.coden=IJPEG8&rft_id=info:doi/10.1109/JPHOTOV.2021.3116019&rft_dat=%3Cproquest_ieee_%3E2612470615%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c299t-4675c329b3993fbc21f448b1c4246e0a138b5855199a7c3621030dabd9703f743%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2612470615&rft_id=info:pmid/&rft_ieee_id=9585483&rfr_iscdi=true