Loading…
TAPCA: time adaptive self-organizing maps for adaptive principal components analysis
We propose a neural network called time adaptive principal components analysis (TAPCA) which is composed of a number of time adaptive self-organizing map (TASOM) networks. Each TASOM in the TAPCA network estimates one eigenvector of the correlation matrix of the input vectors entered so far, without...
Saved in:
Main Authors: | , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 512 vol.1 |
container_issue | |
container_start_page | 509 |
container_title | |
container_volume | 1 |
creator | Shah-Hosseini, H. Safabakhsh, R. |
description | We propose a neural network called time adaptive principal components analysis (TAPCA) which is composed of a number of time adaptive self-organizing map (TASOM) networks. Each TASOM in the TAPCA network estimates one eigenvector of the correlation matrix of the input vectors entered so far, without having to calculate the correlation matrix. This estimation is done in an online fashion. The input distribution can be nonstationary, too. The eigenvectors appear in order of importance: the first TASOM calculates the eigenvector corresponding to the largest eigenvalue of the correlation matrix, and so on. The TAPCA network is tested in stationary environments, and is compared with the eigendecomposition (ED) method and generalized Hebbian algorithm (GHA) network. It performs better than both methods and needs fewer samples to converge. It is also tested in nonstationary environments, where it automatically tolerates translation, rotation, scaling, and a change in the shape of the distribution. |
doi_str_mv | 10.1109/ICIP.2001.959065 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_6IE</sourceid><recordid>TN_cdi_ieee_primary_959065</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>959065</ieee_id><sourcerecordid>959065</sourcerecordid><originalsourceid>FETCH-LOGICAL-i104t-547bf8ee282b3a09795d5ebe035372329f398a0f3197bb406d1402a999624ce63</originalsourceid><addsrcrecordid>eNpFj8tKxEAURBtEUMfZi6v-gcTbr3TaXQg-AgPOIq6Hm-T20JIX6SCMX-_ACNamoDgUVYw9CEiFAPdUldU-lQAidcZBZq7YHdgcVGalETdsG-MXnKWNPke3rK6LfVk88zUMxLHDeQ3fxCP1PpmWI47hJ4xHPuAcuZ-Wf2JewtiGGXveTsM8jTSukeOI_SmGeM-uPfaRtn--YZ-vL3X5nuw-3qqy2CVBgF4To23jcyKZy0YhOOtMZ6ghUEZZqaTzyuUIXglnm0ZD1gkNEp1zmdQtZWrDHi-9gYgO50kDLqfD5bf6Bfr-TdY</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>TAPCA: time adaptive self-organizing maps for adaptive principal components analysis</title><source>IEEE Electronic Library (IEL) Conference Proceedings</source><creator>Shah-Hosseini, H. ; Safabakhsh, R.</creator><creatorcontrib>Shah-Hosseini, H. ; Safabakhsh, R.</creatorcontrib><description>We propose a neural network called time adaptive principal components analysis (TAPCA) which is composed of a number of time adaptive self-organizing map (TASOM) networks. Each TASOM in the TAPCA network estimates one eigenvector of the correlation matrix of the input vectors entered so far, without having to calculate the correlation matrix. This estimation is done in an online fashion. The input distribution can be nonstationary, too. The eigenvectors appear in order of importance: the first TASOM calculates the eigenvector corresponding to the largest eigenvalue of the correlation matrix, and so on. The TAPCA network is tested in stationary environments, and is compared with the eigendecomposition (ED) method and generalized Hebbian algorithm (GHA) network. It performs better than both methods and needs fewer samples to converge. It is also tested in nonstationary environments, where it automatically tolerates translation, rotation, scaling, and a change in the shape of the distribution.</description><identifier>ISBN: 0780367251</identifier><identifier>ISBN: 9780780367258</identifier><identifier>DOI: 10.1109/ICIP.2001.959065</identifier><language>eng</language><publisher>IEEE</publisher><subject>Adaptive systems ; Computer networks ; Eigenvalues and eigenfunctions ; Neural networks ; Neurons ; Optical computing ; Principal component analysis ; Self organizing feature maps ; Shape ; Testing</subject><ispartof>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.1, p.509-512 vol.1</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/959065$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,2058,4050,4051,27925,54920</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/959065$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Shah-Hosseini, H.</creatorcontrib><creatorcontrib>Safabakhsh, R.</creatorcontrib><title>TAPCA: time adaptive self-organizing maps for adaptive principal components analysis</title><title>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</title><addtitle>ICIP</addtitle><description>We propose a neural network called time adaptive principal components analysis (TAPCA) which is composed of a number of time adaptive self-organizing map (TASOM) networks. Each TASOM in the TAPCA network estimates one eigenvector of the correlation matrix of the input vectors entered so far, without having to calculate the correlation matrix. This estimation is done in an online fashion. The input distribution can be nonstationary, too. The eigenvectors appear in order of importance: the first TASOM calculates the eigenvector corresponding to the largest eigenvalue of the correlation matrix, and so on. The TAPCA network is tested in stationary environments, and is compared with the eigendecomposition (ED) method and generalized Hebbian algorithm (GHA) network. It performs better than both methods and needs fewer samples to converge. It is also tested in nonstationary environments, where it automatically tolerates translation, rotation, scaling, and a change in the shape of the distribution.</description><subject>Adaptive systems</subject><subject>Computer networks</subject><subject>Eigenvalues and eigenfunctions</subject><subject>Neural networks</subject><subject>Neurons</subject><subject>Optical computing</subject><subject>Principal component analysis</subject><subject>Self organizing feature maps</subject><subject>Shape</subject><subject>Testing</subject><isbn>0780367251</isbn><isbn>9780780367258</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2001</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNpFj8tKxEAURBtEUMfZi6v-gcTbr3TaXQg-AgPOIq6Hm-T20JIX6SCMX-_ACNamoDgUVYw9CEiFAPdUldU-lQAidcZBZq7YHdgcVGalETdsG-MXnKWNPke3rK6LfVk88zUMxLHDeQ3fxCP1PpmWI47hJ4xHPuAcuZ-Wf2JewtiGGXveTsM8jTSukeOI_SmGeM-uPfaRtn--YZ-vL3X5nuw-3qqy2CVBgF4To23jcyKZy0YhOOtMZ6ghUEZZqaTzyuUIXglnm0ZD1gkNEp1zmdQtZWrDHi-9gYgO50kDLqfD5bf6Bfr-TdY</recordid><startdate>2001</startdate><enddate>2001</enddate><creator>Shah-Hosseini, H.</creator><creator>Safabakhsh, R.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2001</creationdate><title>TAPCA: time adaptive self-organizing maps for adaptive principal components analysis</title><author>Shah-Hosseini, H. ; Safabakhsh, R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i104t-547bf8ee282b3a09795d5ebe035372329f398a0f3197bb406d1402a999624ce63</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Adaptive systems</topic><topic>Computer networks</topic><topic>Eigenvalues and eigenfunctions</topic><topic>Neural networks</topic><topic>Neurons</topic><topic>Optical computing</topic><topic>Principal component analysis</topic><topic>Self organizing feature maps</topic><topic>Shape</topic><topic>Testing</topic><toplevel>online_resources</toplevel><creatorcontrib>Shah-Hosseini, H.</creatorcontrib><creatorcontrib>Safabakhsh, R.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Shah-Hosseini, H.</au><au>Safabakhsh, R.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>TAPCA: time adaptive self-organizing maps for adaptive principal components analysis</atitle><btitle>Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205)</btitle><stitle>ICIP</stitle><date>2001</date><risdate>2001</risdate><volume>1</volume><spage>509</spage><epage>512 vol.1</epage><pages>509-512 vol.1</pages><isbn>0780367251</isbn><isbn>9780780367258</isbn><abstract>We propose a neural network called time adaptive principal components analysis (TAPCA) which is composed of a number of time adaptive self-organizing map (TASOM) networks. Each TASOM in the TAPCA network estimates one eigenvector of the correlation matrix of the input vectors entered so far, without having to calculate the correlation matrix. This estimation is done in an online fashion. The input distribution can be nonstationary, too. The eigenvectors appear in order of importance: the first TASOM calculates the eigenvector corresponding to the largest eigenvalue of the correlation matrix, and so on. The TAPCA network is tested in stationary environments, and is compared with the eigendecomposition (ED) method and generalized Hebbian algorithm (GHA) network. It performs better than both methods and needs fewer samples to converge. It is also tested in nonstationary environments, where it automatically tolerates translation, rotation, scaling, and a change in the shape of the distribution.</abstract><pub>IEEE</pub><doi>10.1109/ICIP.2001.959065</doi></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISBN: 0780367251 |
ispartof | Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205), 2001, Vol.1, p.509-512 vol.1 |
issn | |
language | eng |
recordid | cdi_ieee_primary_959065 |
source | IEEE Electronic Library (IEL) Conference Proceedings |
subjects | Adaptive systems Computer networks Eigenvalues and eigenfunctions Neural networks Neurons Optical computing Principal component analysis Self organizing feature maps Shape Testing |
title | TAPCA: time adaptive self-organizing maps for adaptive principal components analysis |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T20%3A44%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_6IE&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=TAPCA:%20time%20adaptive%20self-organizing%20maps%20for%20adaptive%20principal%20components%20analysis&rft.btitle=Proceedings%202001%20International%20Conference%20on%20Image%20Processing%20(Cat.%20No.01CH37205)&rft.au=Shah-Hosseini,%20H.&rft.date=2001&rft.volume=1&rft.spage=509&rft.epage=512%20vol.1&rft.pages=509-512%20vol.1&rft.isbn=0780367251&rft.isbn_list=9780780367258&rft_id=info:doi/10.1109/ICIP.2001.959065&rft_dat=%3Cieee_6IE%3E959065%3C/ieee_6IE%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i104t-547bf8ee282b3a09795d5ebe035372329f398a0f3197bb406d1402a999624ce63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=959065&rfr_iscdi=true |