Loading…
Power Line Recognition and Foreign Objects Detection Based on Image Processing
In order to improve the efficiency of power line inspection, this paper uses the power line image collected, through the method of image processing, to identify power lines and detect foreign bodies. First, the Canny operator is improved by using Otsu adaptive acquisition of double thresholds for ed...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 6693 |
container_issue | |
container_start_page | 6689 |
container_title | |
container_volume | |
creator | Song, Zhenlin Xin, Shaou Gui, Xinying Qi, Guoqing |
description | In order to improve the efficiency of power line inspection, this paper uses the power line image collected, through the method of image processing, to identify power lines and detect foreign bodies. First, the Canny operator is improved by using Otsu adaptive acquisition of double thresholds for edge extraction of power line images. Then an improved Hough transform is used to detect straight lines in edge images for improving the accuracy of power line detection. Furthermore, a local contour detection method without considering the relationship between power lines and foreign objects is proposed to extract foreign objects on power lines, which can realize decoupling of power line recognition and fault detection. Through the simulation test of the collected power lines, the accuracy of the proposed method for power line extraction and foreign objects detection in the image is verified. |
doi_str_mv | 10.1109/CCDC52312.2021.9602279 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9602279</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9602279</ieee_id><sourcerecordid>9602279</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-58f179f766517048e1ff0dcc110d6ae46ffeee6e28e5bf1e2b7cd0822755f1353</originalsourceid><addsrcrecordid>eNotj99KwzAYxaMgOOeeQJC8QOeXNH8vtXM6KG6IXo-0_VIyXCpNQXx7M9zVOXAOh_Mj5J7BkjGwD1W1qiQvGV9y4GxpFXCu7QVZWG2YUlIIMNZekhmzwhRWCH1NblI6AChVAszI2274wZHWISJ9x3boY5jCEKmLHV0PI4Y-0m1zwHZKdIVT1lP65BJ2NJvN0fVId-PQYkoh9rfkyruvhIuzzsnn-vmjei3q7cumeqyLwKGcCmk809br_JBpEAaZ99C1bWbqlEOhvEdEhdygbDxD3ui2A5PZpPSslOWc3P3vhtzbf4_h6Mbf_Rm__ANpbU8x</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Power Line Recognition and Foreign Objects Detection Based on Image Processing</title><source>IEEE Xplore All Conference Series</source><creator>Song, Zhenlin ; Xin, Shaou ; Gui, Xinying ; Qi, Guoqing</creator><creatorcontrib>Song, Zhenlin ; Xin, Shaou ; Gui, Xinying ; Qi, Guoqing</creatorcontrib><description>In order to improve the efficiency of power line inspection, this paper uses the power line image collected, through the method of image processing, to identify power lines and detect foreign bodies. First, the Canny operator is improved by using Otsu adaptive acquisition of double thresholds for edge extraction of power line images. Then an improved Hough transform is used to detect straight lines in edge images for improving the accuracy of power line detection. Furthermore, a local contour detection method without considering the relationship between power lines and foreign objects is proposed to extract foreign objects on power lines, which can realize decoupling of power line recognition and fault detection. Through the simulation test of the collected power lines, the accuracy of the proposed method for power line extraction and foreign objects detection in the image is verified.</description><identifier>EISSN: 1948-9447</identifier><identifier>EISBN: 9781665440899</identifier><identifier>EISBN: 1665440899</identifier><identifier>DOI: 10.1109/CCDC52312.2021.9602279</identifier><language>eng</language><publisher>IEEE</publisher><subject>Edge detection ; Electric power inspection ; Fault detection ; Feature extraction ; Foreign objects detection ; Hough Transformation ; Image edge detection ; Inspection ; Manuals ; Object detection ; Power line image ; Transforms</subject><ispartof>2021 33rd Chinese Control and Decision Conference (CCDC), 2021, p.6689-6693</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9602279$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9602279$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Song, Zhenlin</creatorcontrib><creatorcontrib>Xin, Shaou</creatorcontrib><creatorcontrib>Gui, Xinying</creatorcontrib><creatorcontrib>Qi, Guoqing</creatorcontrib><title>Power Line Recognition and Foreign Objects Detection Based on Image Processing</title><title>2021 33rd Chinese Control and Decision Conference (CCDC)</title><addtitle>CCDC</addtitle><description>In order to improve the efficiency of power line inspection, this paper uses the power line image collected, through the method of image processing, to identify power lines and detect foreign bodies. First, the Canny operator is improved by using Otsu adaptive acquisition of double thresholds for edge extraction of power line images. Then an improved Hough transform is used to detect straight lines in edge images for improving the accuracy of power line detection. Furthermore, a local contour detection method without considering the relationship between power lines and foreign objects is proposed to extract foreign objects on power lines, which can realize decoupling of power line recognition and fault detection. Through the simulation test of the collected power lines, the accuracy of the proposed method for power line extraction and foreign objects detection in the image is verified.</description><subject>Edge detection</subject><subject>Electric power inspection</subject><subject>Fault detection</subject><subject>Feature extraction</subject><subject>Foreign objects detection</subject><subject>Hough Transformation</subject><subject>Image edge detection</subject><subject>Inspection</subject><subject>Manuals</subject><subject>Object detection</subject><subject>Power line image</subject><subject>Transforms</subject><issn>1948-9447</issn><isbn>9781665440899</isbn><isbn>1665440899</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj99KwzAYxaMgOOeeQJC8QOeXNH8vtXM6KG6IXo-0_VIyXCpNQXx7M9zVOXAOh_Mj5J7BkjGwD1W1qiQvGV9y4GxpFXCu7QVZWG2YUlIIMNZekhmzwhRWCH1NblI6AChVAszI2274wZHWISJ9x3boY5jCEKmLHV0PI4Y-0m1zwHZKdIVT1lP65BJ2NJvN0fVId-PQYkoh9rfkyruvhIuzzsnn-vmjei3q7cumeqyLwKGcCmk809br_JBpEAaZ99C1bWbqlEOhvEdEhdygbDxD3ui2A5PZpPSslOWc3P3vhtzbf4_h6Mbf_Rm__ANpbU8x</recordid><startdate>20210522</startdate><enddate>20210522</enddate><creator>Song, Zhenlin</creator><creator>Xin, Shaou</creator><creator>Gui, Xinying</creator><creator>Qi, Guoqing</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20210522</creationdate><title>Power Line Recognition and Foreign Objects Detection Based on Image Processing</title><author>Song, Zhenlin ; Xin, Shaou ; Gui, Xinying ; Qi, Guoqing</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-58f179f766517048e1ff0dcc110d6ae46ffeee6e28e5bf1e2b7cd0822755f1353</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Edge detection</topic><topic>Electric power inspection</topic><topic>Fault detection</topic><topic>Feature extraction</topic><topic>Foreign objects detection</topic><topic>Hough Transformation</topic><topic>Image edge detection</topic><topic>Inspection</topic><topic>Manuals</topic><topic>Object detection</topic><topic>Power line image</topic><topic>Transforms</topic><toplevel>online_resources</toplevel><creatorcontrib>Song, Zhenlin</creatorcontrib><creatorcontrib>Xin, Shaou</creatorcontrib><creatorcontrib>Gui, Xinying</creatorcontrib><creatorcontrib>Qi, Guoqing</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Song, Zhenlin</au><au>Xin, Shaou</au><au>Gui, Xinying</au><au>Qi, Guoqing</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Power Line Recognition and Foreign Objects Detection Based on Image Processing</atitle><btitle>2021 33rd Chinese Control and Decision Conference (CCDC)</btitle><stitle>CCDC</stitle><date>2021-05-22</date><risdate>2021</risdate><spage>6689</spage><epage>6693</epage><pages>6689-6693</pages><eissn>1948-9447</eissn><eisbn>9781665440899</eisbn><eisbn>1665440899</eisbn><abstract>In order to improve the efficiency of power line inspection, this paper uses the power line image collected, through the method of image processing, to identify power lines and detect foreign bodies. First, the Canny operator is improved by using Otsu adaptive acquisition of double thresholds for edge extraction of power line images. Then an improved Hough transform is used to detect straight lines in edge images for improving the accuracy of power line detection. Furthermore, a local contour detection method without considering the relationship between power lines and foreign objects is proposed to extract foreign objects on power lines, which can realize decoupling of power line recognition and fault detection. Through the simulation test of the collected power lines, the accuracy of the proposed method for power line extraction and foreign objects detection in the image is verified.</abstract><pub>IEEE</pub><doi>10.1109/CCDC52312.2021.9602279</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 1948-9447 |
ispartof | 2021 33rd Chinese Control and Decision Conference (CCDC), 2021, p.6689-6693 |
issn | 1948-9447 |
language | eng |
recordid | cdi_ieee_primary_9602279 |
source | IEEE Xplore All Conference Series |
subjects | Edge detection Electric power inspection Fault detection Feature extraction Foreign objects detection Hough Transformation Image edge detection Inspection Manuals Object detection Power line image Transforms |
title | Power Line Recognition and Foreign Objects Detection Based on Image Processing |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T08%3A34%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Power%20Line%20Recognition%20and%20Foreign%20Objects%20Detection%20Based%20on%20Image%20Processing&rft.btitle=2021%2033rd%20Chinese%20Control%20and%20Decision%20Conference%20(CCDC)&rft.au=Song,%20Zhenlin&rft.date=2021-05-22&rft.spage=6689&rft.epage=6693&rft.pages=6689-6693&rft.eissn=1948-9447&rft_id=info:doi/10.1109/CCDC52312.2021.9602279&rft.eisbn=9781665440899&rft.eisbn_list=1665440899&rft_dat=%3Cieee_CHZPO%3E9602279%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-58f179f766517048e1ff0dcc110d6ae46ffeee6e28e5bf1e2b7cd0822755f1353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9602279&rfr_iscdi=true |