Loading…

High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps

Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can intr...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on quantum engineering 2022, Vol.3, p.1-11
Main Authors: Spivey, Robert Fulton, Inlek, Ismail Volkan, Jia, Zhubing, Crain, Stephen, Sun, Ke, Kim, Junki, Vrijsen, Geert, Fang, Chao, Fitzgerald, Colin, Kross, Steffen, Noel, Tom, Kim, Jungsang
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33
cites cdi_FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33
container_end_page 11
container_issue
container_start_page 1
container_title IEEE transactions on quantum engineering
container_volume 3
creator Spivey, Robert Fulton
Inlek, Ismail Volkan
Jia, Zhubing
Crain, Stephen
Sun, Ke
Kim, Junki
Vrijsen, Geert
Fang, Chao
Fitzgerald, Colin
Kross, Steffen
Noel, Tom
Kim, Jungsang
description Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can introduce relative motion between the ion and the wavefronts of lasers used to manipulate the ions. Here, we present a novel ion trapping system where a commercial low-vibration closed-cycle cryostat is used in a custom monolithic enclosure. We measure mechanical vibrations of the sample stage using an optical interferometer, and observe a root-mean-square relative displacement of 2.4 nm and a peak-to-peak displacement of 17 nm between free-space beams and the trapping location. We packaged a surface ion trap in a cryopackage assembly that enables easy handling while creating a UHV environment for the ions. The trap cryopackage contains activated carbon getter material for enhanced sorption pumping near the trapping location, and source material for ablation loading. Using ^{171}Yb^{+} as our ion, we estimate the operating pressure of the trap as a function of package temperature using phase transitions of zig-zag ion chains as a probe. We measured the radial mode heating rate of a single ion to be 13 quanta/s on average. The Ramsey coherence measurements yield 330-ms coherence time for counter-propagating Raman carrier transitions using a 355-nm mode-locked pulse laser, demonstrating the high optical stability.
doi_str_mv 10.1109/TQE.2021.3125926
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9606562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606562</ieee_id><doaj_id>oai_doaj_org_article_db917e0bb960453a8fa2376788b1c7ab</doaj_id><sourcerecordid>2616719293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33</originalsourceid><addsrcrecordid>eNpNUctLwzAYL6KgqHfBS8Bz55e0efQow8dA0LGJx_AlTWvm1sw0Pey_t3Minr4Hvxf8suyKwoRSqG6X8_sJA0YnBWW8YuIoO2NCVTlVoI7_7afZZd-vAIBxSgWws-ztybcf-SKh8WufdmQad6F1nbdkseuT25AmRDIfsEvDhkzDZjsk37Xk3aePnxNtIq9oP7F1NZmFjiwjbvuL7KTBde8uf-d59vZwv5w-5c8vj7Pp3XNuy1KkHBturORKShBGcaoKZR0qYIpLalHVNePSIGIDgFCXhtUV48yqwtHSYlGcZ7ODbh1wpbfRbzDudECvfx4hthpj8nbtdG0qKh0YUwkoeYGqQVZIIZUy1Eo0o9bNQWsbw9fg-qRXYYjdGF8zQYWkFav2jnBA2Rj6Prrmz5WC3nehxy70vgv928VIuT5QvHPuDz7GEFyw4hsXjYPb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616719293</pqid></control><display><type>article</type><title>High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps</title><source>IEEE Xplore Open Access Journals</source><creator>Spivey, Robert Fulton ; Inlek, Ismail Volkan ; Jia, Zhubing ; Crain, Stephen ; Sun, Ke ; Kim, Junki ; Vrijsen, Geert ; Fang, Chao ; Fitzgerald, Colin ; Kross, Steffen ; Noel, Tom ; Kim, Jungsang</creator><creatorcontrib>Spivey, Robert Fulton ; Inlek, Ismail Volkan ; Jia, Zhubing ; Crain, Stephen ; Sun, Ke ; Kim, Junki ; Vrijsen, Geert ; Fang, Chao ; Fitzgerald, Colin ; Kross, Steffen ; Noel, Tom ; Kim, Jungsang</creatorcontrib><description><![CDATA[Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can introduce relative motion between the ion and the wavefronts of lasers used to manipulate the ions. Here, we present a novel ion trapping system where a commercial low-vibration closed-cycle cryostat is used in a custom monolithic enclosure. We measure mechanical vibrations of the sample stage using an optical interferometer, and observe a root-mean-square relative displacement of 2.4 nm and a peak-to-peak displacement of 17 nm between free-space beams and the trapping location. We packaged a surface ion trap in a cryopackage assembly that enables easy handling while creating a UHV environment for the ions. The trap cryopackage contains activated carbon getter material for enhanced sorption pumping near the trapping location, and source material for ablation loading. Using <inline-formula><tex-math notation="LaTeX">^{171}</tex-math></inline-formula>Yb<inline-formula><tex-math notation="LaTeX">^{+}</tex-math></inline-formula> as our ion, we estimate the operating pressure of the trap as a function of package temperature using phase transitions of zig-zag ion chains as a probe. We measured the radial mode heating rate of a single ion to be 13 quanta/s on average. The Ramsey coherence measurements yield 330-ms coherence time for counter-propagating Raman carrier transitions using a 355-nm mode-locked pulse laser, demonstrating the high optical stability.]]></description><identifier>ISSN: 2689-1808</identifier><identifier>EISSN: 2689-1808</identifier><identifier>DOI: 10.1109/TQE.2021.3125926</identifier><identifier>CODEN: ITQEA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablative materials ; Activated carbon ; Atom optics ; Chains ; Coherence ; Compressors ; Cryogenic equipment ; Cryostats ; Gettering ; Heating rate ; Ion beams ; Ion traps (instrumentation) ; Ions ; Laser beams ; Laser stability ; Modulation ; Optical imaging ; Optical pumping ; Optomechanical design ; Phase transitions ; Quantum computing ; Stability ; trapped ions ; Ultrahigh vacuum ; Vibration measurement ; Wave fronts</subject><ispartof>IEEE transactions on quantum engineering, 2022, Vol.3, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33</citedby><cites>FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33</cites><orcidid>0000-0001-9551-3826 ; 0000-0002-0767-7466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606562$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Spivey, Robert Fulton</creatorcontrib><creatorcontrib>Inlek, Ismail Volkan</creatorcontrib><creatorcontrib>Jia, Zhubing</creatorcontrib><creatorcontrib>Crain, Stephen</creatorcontrib><creatorcontrib>Sun, Ke</creatorcontrib><creatorcontrib>Kim, Junki</creatorcontrib><creatorcontrib>Vrijsen, Geert</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Fitzgerald, Colin</creatorcontrib><creatorcontrib>Kross, Steffen</creatorcontrib><creatorcontrib>Noel, Tom</creatorcontrib><creatorcontrib>Kim, Jungsang</creatorcontrib><title>High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps</title><title>IEEE transactions on quantum engineering</title><addtitle>TQE</addtitle><description><![CDATA[Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can introduce relative motion between the ion and the wavefronts of lasers used to manipulate the ions. Here, we present a novel ion trapping system where a commercial low-vibration closed-cycle cryostat is used in a custom monolithic enclosure. We measure mechanical vibrations of the sample stage using an optical interferometer, and observe a root-mean-square relative displacement of 2.4 nm and a peak-to-peak displacement of 17 nm between free-space beams and the trapping location. We packaged a surface ion trap in a cryopackage assembly that enables easy handling while creating a UHV environment for the ions. The trap cryopackage contains activated carbon getter material for enhanced sorption pumping near the trapping location, and source material for ablation loading. Using <inline-formula><tex-math notation="LaTeX">^{171}</tex-math></inline-formula>Yb<inline-formula><tex-math notation="LaTeX">^{+}</tex-math></inline-formula> as our ion, we estimate the operating pressure of the trap as a function of package temperature using phase transitions of zig-zag ion chains as a probe. We measured the radial mode heating rate of a single ion to be 13 quanta/s on average. The Ramsey coherence measurements yield 330-ms coherence time for counter-propagating Raman carrier transitions using a 355-nm mode-locked pulse laser, demonstrating the high optical stability.]]></description><subject>Ablative materials</subject><subject>Activated carbon</subject><subject>Atom optics</subject><subject>Chains</subject><subject>Coherence</subject><subject>Compressors</subject><subject>Cryogenic equipment</subject><subject>Cryostats</subject><subject>Gettering</subject><subject>Heating rate</subject><subject>Ion beams</subject><subject>Ion traps (instrumentation)</subject><subject>Ions</subject><subject>Laser beams</subject><subject>Laser stability</subject><subject>Modulation</subject><subject>Optical imaging</subject><subject>Optical pumping</subject><subject>Optomechanical design</subject><subject>Phase transitions</subject><subject>Quantum computing</subject><subject>Stability</subject><subject>trapped ions</subject><subject>Ultrahigh vacuum</subject><subject>Vibration measurement</subject><subject>Wave fronts</subject><issn>2689-1808</issn><issn>2689-1808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctLwzAYL6KgqHfBS8Bz55e0efQow8dA0LGJx_AlTWvm1sw0Pey_t3Minr4Hvxf8suyKwoRSqG6X8_sJA0YnBWW8YuIoO2NCVTlVoI7_7afZZd-vAIBxSgWws-ztybcf-SKh8WufdmQad6F1nbdkseuT25AmRDIfsEvDhkzDZjsk37Xk3aePnxNtIq9oP7F1NZmFjiwjbvuL7KTBde8uf-d59vZwv5w-5c8vj7Pp3XNuy1KkHBturORKShBGcaoKZR0qYIpLalHVNePSIGIDgFCXhtUV48yqwtHSYlGcZ7ODbh1wpbfRbzDudECvfx4hthpj8nbtdG0qKh0YUwkoeYGqQVZIIZUy1Eo0o9bNQWsbw9fg-qRXYYjdGF8zQYWkFav2jnBA2Rj6Prrmz5WC3nehxy70vgv928VIuT5QvHPuDz7GEFyw4hsXjYPb</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Spivey, Robert Fulton</creator><creator>Inlek, Ismail Volkan</creator><creator>Jia, Zhubing</creator><creator>Crain, Stephen</creator><creator>Sun, Ke</creator><creator>Kim, Junki</creator><creator>Vrijsen, Geert</creator><creator>Fang, Chao</creator><creator>Fitzgerald, Colin</creator><creator>Kross, Steffen</creator><creator>Noel, Tom</creator><creator>Kim, Jungsang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9551-3826</orcidid><orcidid>https://orcid.org/0000-0002-0767-7466</orcidid></search><sort><creationdate>2022</creationdate><title>High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps</title><author>Spivey, Robert Fulton ; Inlek, Ismail Volkan ; Jia, Zhubing ; Crain, Stephen ; Sun, Ke ; Kim, Junki ; Vrijsen, Geert ; Fang, Chao ; Fitzgerald, Colin ; Kross, Steffen ; Noel, Tom ; Kim, Jungsang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablative materials</topic><topic>Activated carbon</topic><topic>Atom optics</topic><topic>Chains</topic><topic>Coherence</topic><topic>Compressors</topic><topic>Cryogenic equipment</topic><topic>Cryostats</topic><topic>Gettering</topic><topic>Heating rate</topic><topic>Ion beams</topic><topic>Ion traps (instrumentation)</topic><topic>Ions</topic><topic>Laser beams</topic><topic>Laser stability</topic><topic>Modulation</topic><topic>Optical imaging</topic><topic>Optical pumping</topic><topic>Optomechanical design</topic><topic>Phase transitions</topic><topic>Quantum computing</topic><topic>Stability</topic><topic>trapped ions</topic><topic>Ultrahigh vacuum</topic><topic>Vibration measurement</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spivey, Robert Fulton</creatorcontrib><creatorcontrib>Inlek, Ismail Volkan</creatorcontrib><creatorcontrib>Jia, Zhubing</creatorcontrib><creatorcontrib>Crain, Stephen</creatorcontrib><creatorcontrib>Sun, Ke</creatorcontrib><creatorcontrib>Kim, Junki</creatorcontrib><creatorcontrib>Vrijsen, Geert</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Fitzgerald, Colin</creatorcontrib><creatorcontrib>Kross, Steffen</creatorcontrib><creatorcontrib>Noel, Tom</creatorcontrib><creatorcontrib>Kim, Jungsang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on quantum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spivey, Robert Fulton</au><au>Inlek, Ismail Volkan</au><au>Jia, Zhubing</au><au>Crain, Stephen</au><au>Sun, Ke</au><au>Kim, Junki</au><au>Vrijsen, Geert</au><au>Fang, Chao</au><au>Fitzgerald, Colin</au><au>Kross, Steffen</au><au>Noel, Tom</au><au>Kim, Jungsang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps</atitle><jtitle>IEEE transactions on quantum engineering</jtitle><stitle>TQE</stitle><date>2022</date><risdate>2022</risdate><volume>3</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2689-1808</issn><eissn>2689-1808</eissn><coden>ITQEA9</coden><abstract><![CDATA[Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can introduce relative motion between the ion and the wavefronts of lasers used to manipulate the ions. Here, we present a novel ion trapping system where a commercial low-vibration closed-cycle cryostat is used in a custom monolithic enclosure. We measure mechanical vibrations of the sample stage using an optical interferometer, and observe a root-mean-square relative displacement of 2.4 nm and a peak-to-peak displacement of 17 nm between free-space beams and the trapping location. We packaged a surface ion trap in a cryopackage assembly that enables easy handling while creating a UHV environment for the ions. The trap cryopackage contains activated carbon getter material for enhanced sorption pumping near the trapping location, and source material for ablation loading. Using <inline-formula><tex-math notation="LaTeX">^{171}</tex-math></inline-formula>Yb<inline-formula><tex-math notation="LaTeX">^{+}</tex-math></inline-formula> as our ion, we estimate the operating pressure of the trap as a function of package temperature using phase transitions of zig-zag ion chains as a probe. We measured the radial mode heating rate of a single ion to be 13 quanta/s on average. The Ramsey coherence measurements yield 330-ms coherence time for counter-propagating Raman carrier transitions using a 355-nm mode-locked pulse laser, demonstrating the high optical stability.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TQE.2021.3125926</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9551-3826</orcidid><orcidid>https://orcid.org/0000-0002-0767-7466</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2689-1808
ispartof IEEE transactions on quantum engineering, 2022, Vol.3, p.1-11
issn 2689-1808
2689-1808
language eng
recordid cdi_ieee_primary_9606562
source IEEE Xplore Open Access Journals
subjects Ablative materials
Activated carbon
Atom optics
Chains
Coherence
Compressors
Cryogenic equipment
Cryostats
Gettering
Heating rate
Ion beams
Ion traps (instrumentation)
Ions
Laser beams
Laser stability
Modulation
Optical imaging
Optical pumping
Optomechanical design
Phase transitions
Quantum computing
Stability
trapped ions
Ultrahigh vacuum
Vibration measurement
Wave fronts
title High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Stability%20Cryogenic%20System%20for%20Quantum%20Computing%20With%20Compact%20Packaged%20Ion%20Traps&rft.jtitle=IEEE%20transactions%20on%20quantum%20engineering&rft.au=Spivey,%20Robert%20Fulton&rft.date=2022&rft.volume=3&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2689-1808&rft.eissn=2689-1808&rft.coden=ITQEA9&rft_id=info:doi/10.1109/TQE.2021.3125926&rft_dat=%3Cproquest_ieee_%3E2616719293%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616719293&rft_id=info:pmid/&rft_ieee_id=9606562&rfr_iscdi=true