Loading…
High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps
Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can intr...
Saved in:
Published in: | IEEE transactions on quantum engineering 2022, Vol.3, p.1-11 |
---|---|
Main Authors: | , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33 |
container_end_page | 11 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on quantum engineering |
container_volume | 3 |
creator | Spivey, Robert Fulton Inlek, Ismail Volkan Jia, Zhubing Crain, Stephen Sun, Ke Kim, Junki Vrijsen, Geert Fang, Chao Fitzgerald, Colin Kross, Steffen Noel, Tom Kim, Jungsang |
description | Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can introduce relative motion between the ion and the wavefronts of lasers used to manipulate the ions. Here, we present a novel ion trapping system where a commercial low-vibration closed-cycle cryostat is used in a custom monolithic enclosure. We measure mechanical vibrations of the sample stage using an optical interferometer, and observe a root-mean-square relative displacement of 2.4 nm and a peak-to-peak displacement of 17 nm between free-space beams and the trapping location. We packaged a surface ion trap in a cryopackage assembly that enables easy handling while creating a UHV environment for the ions. The trap cryopackage contains activated carbon getter material for enhanced sorption pumping near the trapping location, and source material for ablation loading. Using ^{171}Yb^{+} as our ion, we estimate the operating pressure of the trap as a function of package temperature using phase transitions of zig-zag ion chains as a probe. We measured the radial mode heating rate of a single ion to be 13 quanta/s on average. The Ramsey coherence measurements yield 330-ms coherence time for counter-propagating Raman carrier transitions using a 355-nm mode-locked pulse laser, demonstrating the high optical stability. |
doi_str_mv | 10.1109/TQE.2021.3125926 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9606562</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9606562</ieee_id><doaj_id>oai_doaj_org_article_db917e0bb960453a8fa2376788b1c7ab</doaj_id><sourcerecordid>2616719293</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33</originalsourceid><addsrcrecordid>eNpNUctLwzAYL6KgqHfBS8Bz55e0efQow8dA0LGJx_AlTWvm1sw0Pey_t3Minr4Hvxf8suyKwoRSqG6X8_sJA0YnBWW8YuIoO2NCVTlVoI7_7afZZd-vAIBxSgWws-ztybcf-SKh8WufdmQad6F1nbdkseuT25AmRDIfsEvDhkzDZjsk37Xk3aePnxNtIq9oP7F1NZmFjiwjbvuL7KTBde8uf-d59vZwv5w-5c8vj7Pp3XNuy1KkHBturORKShBGcaoKZR0qYIpLalHVNePSIGIDgFCXhtUV48yqwtHSYlGcZ7ODbh1wpbfRbzDudECvfx4hthpj8nbtdG0qKh0YUwkoeYGqQVZIIZUy1Eo0o9bNQWsbw9fg-qRXYYjdGF8zQYWkFav2jnBA2Rj6Prrmz5WC3nehxy70vgv928VIuT5QvHPuDz7GEFyw4hsXjYPb</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2616719293</pqid></control><display><type>article</type><title>High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps</title><source>IEEE Xplore Open Access Journals</source><creator>Spivey, Robert Fulton ; Inlek, Ismail Volkan ; Jia, Zhubing ; Crain, Stephen ; Sun, Ke ; Kim, Junki ; Vrijsen, Geert ; Fang, Chao ; Fitzgerald, Colin ; Kross, Steffen ; Noel, Tom ; Kim, Jungsang</creator><creatorcontrib>Spivey, Robert Fulton ; Inlek, Ismail Volkan ; Jia, Zhubing ; Crain, Stephen ; Sun, Ke ; Kim, Junki ; Vrijsen, Geert ; Fang, Chao ; Fitzgerald, Colin ; Kross, Steffen ; Noel, Tom ; Kim, Jungsang</creatorcontrib><description><![CDATA[Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can introduce relative motion between the ion and the wavefronts of lasers used to manipulate the ions. Here, we present a novel ion trapping system where a commercial low-vibration closed-cycle cryostat is used in a custom monolithic enclosure. We measure mechanical vibrations of the sample stage using an optical interferometer, and observe a root-mean-square relative displacement of 2.4 nm and a peak-to-peak displacement of 17 nm between free-space beams and the trapping location. We packaged a surface ion trap in a cryopackage assembly that enables easy handling while creating a UHV environment for the ions. The trap cryopackage contains activated carbon getter material for enhanced sorption pumping near the trapping location, and source material for ablation loading. Using <inline-formula><tex-math notation="LaTeX">^{171}</tex-math></inline-formula>Yb<inline-formula><tex-math notation="LaTeX">^{+}</tex-math></inline-formula> as our ion, we estimate the operating pressure of the trap as a function of package temperature using phase transitions of zig-zag ion chains as a probe. We measured the radial mode heating rate of a single ion to be 13 quanta/s on average. The Ramsey coherence measurements yield 330-ms coherence time for counter-propagating Raman carrier transitions using a 355-nm mode-locked pulse laser, demonstrating the high optical stability.]]></description><identifier>ISSN: 2689-1808</identifier><identifier>EISSN: 2689-1808</identifier><identifier>DOI: 10.1109/TQE.2021.3125926</identifier><identifier>CODEN: ITQEA9</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Ablative materials ; Activated carbon ; Atom optics ; Chains ; Coherence ; Compressors ; Cryogenic equipment ; Cryostats ; Gettering ; Heating rate ; Ion beams ; Ion traps (instrumentation) ; Ions ; Laser beams ; Laser stability ; Modulation ; Optical imaging ; Optical pumping ; Optomechanical design ; Phase transitions ; Quantum computing ; Stability ; trapped ions ; Ultrahigh vacuum ; Vibration measurement ; Wave fronts</subject><ispartof>IEEE transactions on quantum engineering, 2022, Vol.3, p.1-11</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33</citedby><cites>FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33</cites><orcidid>0000-0001-9551-3826 ; 0000-0002-0767-7466</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9606562$$EHTML$$P50$$Gieee$$Hfree_for_read</linktohtml><link.rule.ids>314,777,781,4010,27614,27904,27905,27906,54914</link.rule.ids></links><search><creatorcontrib>Spivey, Robert Fulton</creatorcontrib><creatorcontrib>Inlek, Ismail Volkan</creatorcontrib><creatorcontrib>Jia, Zhubing</creatorcontrib><creatorcontrib>Crain, Stephen</creatorcontrib><creatorcontrib>Sun, Ke</creatorcontrib><creatorcontrib>Kim, Junki</creatorcontrib><creatorcontrib>Vrijsen, Geert</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Fitzgerald, Colin</creatorcontrib><creatorcontrib>Kross, Steffen</creatorcontrib><creatorcontrib>Noel, Tom</creatorcontrib><creatorcontrib>Kim, Jungsang</creatorcontrib><title>High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps</title><title>IEEE transactions on quantum engineering</title><addtitle>TQE</addtitle><description><![CDATA[Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can introduce relative motion between the ion and the wavefronts of lasers used to manipulate the ions. Here, we present a novel ion trapping system where a commercial low-vibration closed-cycle cryostat is used in a custom monolithic enclosure. We measure mechanical vibrations of the sample stage using an optical interferometer, and observe a root-mean-square relative displacement of 2.4 nm and a peak-to-peak displacement of 17 nm between free-space beams and the trapping location. We packaged a surface ion trap in a cryopackage assembly that enables easy handling while creating a UHV environment for the ions. The trap cryopackage contains activated carbon getter material for enhanced sorption pumping near the trapping location, and source material for ablation loading. Using <inline-formula><tex-math notation="LaTeX">^{171}</tex-math></inline-formula>Yb<inline-formula><tex-math notation="LaTeX">^{+}</tex-math></inline-formula> as our ion, we estimate the operating pressure of the trap as a function of package temperature using phase transitions of zig-zag ion chains as a probe. We measured the radial mode heating rate of a single ion to be 13 quanta/s on average. The Ramsey coherence measurements yield 330-ms coherence time for counter-propagating Raman carrier transitions using a 355-nm mode-locked pulse laser, demonstrating the high optical stability.]]></description><subject>Ablative materials</subject><subject>Activated carbon</subject><subject>Atom optics</subject><subject>Chains</subject><subject>Coherence</subject><subject>Compressors</subject><subject>Cryogenic equipment</subject><subject>Cryostats</subject><subject>Gettering</subject><subject>Heating rate</subject><subject>Ion beams</subject><subject>Ion traps (instrumentation)</subject><subject>Ions</subject><subject>Laser beams</subject><subject>Laser stability</subject><subject>Modulation</subject><subject>Optical imaging</subject><subject>Optical pumping</subject><subject>Optomechanical design</subject><subject>Phase transitions</subject><subject>Quantum computing</subject><subject>Stability</subject><subject>trapped ions</subject><subject>Ultrahigh vacuum</subject><subject>Vibration measurement</subject><subject>Wave fronts</subject><issn>2689-1808</issn><issn>2689-1808</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>ESBDL</sourceid><sourceid>DOA</sourceid><recordid>eNpNUctLwzAYL6KgqHfBS8Bz55e0efQow8dA0LGJx_AlTWvm1sw0Pey_t3Minr4Hvxf8suyKwoRSqG6X8_sJA0YnBWW8YuIoO2NCVTlVoI7_7afZZd-vAIBxSgWws-ztybcf-SKh8WufdmQad6F1nbdkseuT25AmRDIfsEvDhkzDZjsk37Xk3aePnxNtIq9oP7F1NZmFjiwjbvuL7KTBde8uf-d59vZwv5w-5c8vj7Pp3XNuy1KkHBturORKShBGcaoKZR0qYIpLalHVNePSIGIDgFCXhtUV48yqwtHSYlGcZ7ODbh1wpbfRbzDudECvfx4hthpj8nbtdG0qKh0YUwkoeYGqQVZIIZUy1Eo0o9bNQWsbw9fg-qRXYYjdGF8zQYWkFav2jnBA2Rj6Prrmz5WC3nehxy70vgv928VIuT5QvHPuDz7GEFyw4hsXjYPb</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Spivey, Robert Fulton</creator><creator>Inlek, Ismail Volkan</creator><creator>Jia, Zhubing</creator><creator>Crain, Stephen</creator><creator>Sun, Ke</creator><creator>Kim, Junki</creator><creator>Vrijsen, Geert</creator><creator>Fang, Chao</creator><creator>Fitzgerald, Colin</creator><creator>Kross, Steffen</creator><creator>Noel, Tom</creator><creator>Kim, Jungsang</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>ESBDL</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9551-3826</orcidid><orcidid>https://orcid.org/0000-0002-0767-7466</orcidid></search><sort><creationdate>2022</creationdate><title>High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps</title><author>Spivey, Robert Fulton ; Inlek, Ismail Volkan ; Jia, Zhubing ; Crain, Stephen ; Sun, Ke ; Kim, Junki ; Vrijsen, Geert ; Fang, Chao ; Fitzgerald, Colin ; Kross, Steffen ; Noel, Tom ; Kim, Jungsang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Ablative materials</topic><topic>Activated carbon</topic><topic>Atom optics</topic><topic>Chains</topic><topic>Coherence</topic><topic>Compressors</topic><topic>Cryogenic equipment</topic><topic>Cryostats</topic><topic>Gettering</topic><topic>Heating rate</topic><topic>Ion beams</topic><topic>Ion traps (instrumentation)</topic><topic>Ions</topic><topic>Laser beams</topic><topic>Laser stability</topic><topic>Modulation</topic><topic>Optical imaging</topic><topic>Optical pumping</topic><topic>Optomechanical design</topic><topic>Phase transitions</topic><topic>Quantum computing</topic><topic>Stability</topic><topic>trapped ions</topic><topic>Ultrahigh vacuum</topic><topic>Vibration measurement</topic><topic>Wave fronts</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Spivey, Robert Fulton</creatorcontrib><creatorcontrib>Inlek, Ismail Volkan</creatorcontrib><creatorcontrib>Jia, Zhubing</creatorcontrib><creatorcontrib>Crain, Stephen</creatorcontrib><creatorcontrib>Sun, Ke</creatorcontrib><creatorcontrib>Kim, Junki</creatorcontrib><creatorcontrib>Vrijsen, Geert</creatorcontrib><creatorcontrib>Fang, Chao</creatorcontrib><creatorcontrib>Fitzgerald, Colin</creatorcontrib><creatorcontrib>Kross, Steffen</creatorcontrib><creatorcontrib>Noel, Tom</creatorcontrib><creatorcontrib>Kim, Jungsang</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE Xplore Open Access Journals</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Xplore (Online service)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>IEEE transactions on quantum engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Spivey, Robert Fulton</au><au>Inlek, Ismail Volkan</au><au>Jia, Zhubing</au><au>Crain, Stephen</au><au>Sun, Ke</au><au>Kim, Junki</au><au>Vrijsen, Geert</au><au>Fang, Chao</au><au>Fitzgerald, Colin</au><au>Kross, Steffen</au><au>Noel, Tom</au><au>Kim, Jungsang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps</atitle><jtitle>IEEE transactions on quantum engineering</jtitle><stitle>TQE</stitle><date>2022</date><risdate>2022</risdate><volume>3</volume><spage>1</spage><epage>11</epage><pages>1-11</pages><issn>2689-1808</issn><eissn>2689-1808</eissn><coden>ITQEA9</coden><abstract><![CDATA[Cryogenic environments benefit ion trapping experiments by offering lower motional heating rates, collision energies, and an ultrahigh vacuum (UHV) environment for maintaining long ion chains for extended periods of time. Mechanical vibrations caused by compressors in closed-cycle cryostats can introduce relative motion between the ion and the wavefronts of lasers used to manipulate the ions. Here, we present a novel ion trapping system where a commercial low-vibration closed-cycle cryostat is used in a custom monolithic enclosure. We measure mechanical vibrations of the sample stage using an optical interferometer, and observe a root-mean-square relative displacement of 2.4 nm and a peak-to-peak displacement of 17 nm between free-space beams and the trapping location. We packaged a surface ion trap in a cryopackage assembly that enables easy handling while creating a UHV environment for the ions. The trap cryopackage contains activated carbon getter material for enhanced sorption pumping near the trapping location, and source material for ablation loading. Using <inline-formula><tex-math notation="LaTeX">^{171}</tex-math></inline-formula>Yb<inline-formula><tex-math notation="LaTeX">^{+}</tex-math></inline-formula> as our ion, we estimate the operating pressure of the trap as a function of package temperature using phase transitions of zig-zag ion chains as a probe. We measured the radial mode heating rate of a single ion to be 13 quanta/s on average. The Ramsey coherence measurements yield 330-ms coherence time for counter-propagating Raman carrier transitions using a 355-nm mode-locked pulse laser, demonstrating the high optical stability.]]></abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TQE.2021.3125926</doi><tpages>11</tpages><orcidid>https://orcid.org/0000-0001-9551-3826</orcidid><orcidid>https://orcid.org/0000-0002-0767-7466</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2689-1808 |
ispartof | IEEE transactions on quantum engineering, 2022, Vol.3, p.1-11 |
issn | 2689-1808 2689-1808 |
language | eng |
recordid | cdi_ieee_primary_9606562 |
source | IEEE Xplore Open Access Journals |
subjects | Ablative materials Activated carbon Atom optics Chains Coherence Compressors Cryogenic equipment Cryostats Gettering Heating rate Ion beams Ion traps (instrumentation) Ions Laser beams Laser stability Modulation Optical imaging Optical pumping Optomechanical design Phase transitions Quantum computing Stability trapped ions Ultrahigh vacuum Vibration measurement Wave fronts |
title | High-Stability Cryogenic System for Quantum Computing With Compact Packaged Ion Traps |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T22%3A21%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=High-Stability%20Cryogenic%20System%20for%20Quantum%20Computing%20With%20Compact%20Packaged%20Ion%20Traps&rft.jtitle=IEEE%20transactions%20on%20quantum%20engineering&rft.au=Spivey,%20Robert%20Fulton&rft.date=2022&rft.volume=3&rft.spage=1&rft.epage=11&rft.pages=1-11&rft.issn=2689-1808&rft.eissn=2689-1808&rft.coden=ITQEA9&rft_id=info:doi/10.1109/TQE.2021.3125926&rft_dat=%3Cproquest_ieee_%3E2616719293%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-af5bc7587706b851838cea8028571ca8dd257baaaf00a0d4b2d9252c83e14ca33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2616719293&rft_id=info:pmid/&rft_ieee_id=9606562&rfr_iscdi=true |