Loading…
ToFNest: Efficient normal estimation for time-of-flight depth cameras
In this work, we propose an efficient normal estimation method for depth images acquired by Time-of-Flight (ToF) cameras based on feature pyramid networks (FPN). We perform the normal estimation starting from the 2D depth images, projecting the measured data into the 3D space and computing the loss...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 1798 |
container_issue | |
container_start_page | 1791 |
container_title | |
container_volume | |
creator | Molnar, Szilard Kelenyi, Benjamin Tamas, Levente |
description | In this work, we propose an efficient normal estimation method for depth images acquired by Time-of-Flight (ToF) cameras based on feature pyramid networks (FPN). We perform the normal estimation starting from the 2D depth images, projecting the measured data into the 3D space and computing the loss function for the point cloud normal. Despite its simplicity, our method called ToFNest proves to be efficient in terms of robustness and runtime. In order to validate ToFNest we performed extensive evaluations using both public and custom outdoor datasets. Compared with the state of the art methods, our algorithm is faster by an order of magnitude without losing precision on public datasets. The demo code is available on https://github.com/molnarszilard/ToFNest |
doi_str_mv | 10.1109/ICCVW54120.2021.00205 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9607779</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9607779</ieee_id><sourcerecordid>9607779</sourcerecordid><originalsourceid>FETCH-LOGICAL-i133t-583a14e155138e5d2d36d609b7a0e3b96394a3f9395a18cdd5986f8f5be3cb423</originalsourceid><addsrcrecordid>eNotjsFKw0AURUdBsNR-gQjzA6nvzZuZ5LmT0Gqh6KbqskySN3akSUqSjX9vwa4u5ywOV6kHhCUi8OOmLD-_nEUDSwMGlwAG3JVacF6g984CMtK1mhmbU8Zs7a1ajOMPAKBHxwQztdr16zcZpye9ijHVSbpJd_3QhqM-29SGKfWdjv2gzyBZH7N4TN-HSTdymg66Dq0MYbxTNzEcR1lcdq4-1qtd-Zpt31825fM2S0g0Za6ggFbQOaRCXGMa8o0HrvIAQhV7YhsoMrELWNRN47jwsYiuEqora2iu7v-7SUT2p-H8b_jds4c8z5n-ANUaTE4</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>ToFNest: Efficient normal estimation for time-of-flight depth cameras</title><source>IEEE Xplore All Conference Series</source><creator>Molnar, Szilard ; Kelenyi, Benjamin ; Tamas, Levente</creator><creatorcontrib>Molnar, Szilard ; Kelenyi, Benjamin ; Tamas, Levente</creatorcontrib><description>In this work, we propose an efficient normal estimation method for depth images acquired by Time-of-Flight (ToF) cameras based on feature pyramid networks (FPN). We perform the normal estimation starting from the 2D depth images, projecting the measured data into the 3D space and computing the loss function for the point cloud normal. Despite its simplicity, our method called ToFNest proves to be efficient in terms of robustness and runtime. In order to validate ToFNest we performed extensive evaluations using both public and custom outdoor datasets. Compared with the state of the art methods, our algorithm is faster by an order of magnitude without losing precision on public datasets. The demo code is available on https://github.com/molnarszilard/ToFNest</description><identifier>EISSN: 2473-9944</identifier><identifier>EISBN: 9781665401913</identifier><identifier>EISBN: 1665401915</identifier><identifier>DOI: 10.1109/ICCVW54120.2021.00205</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Cameras ; Codes ; Computer vision ; Conferences ; Estimation ; Runtime ; Three-dimensional displays</subject><ispartof>2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021, p.1791-1798</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9607779$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9607779$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Molnar, Szilard</creatorcontrib><creatorcontrib>Kelenyi, Benjamin</creatorcontrib><creatorcontrib>Tamas, Levente</creatorcontrib><title>ToFNest: Efficient normal estimation for time-of-flight depth cameras</title><title>2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)</title><addtitle>ICCVW</addtitle><description>In this work, we propose an efficient normal estimation method for depth images acquired by Time-of-Flight (ToF) cameras based on feature pyramid networks (FPN). We perform the normal estimation starting from the 2D depth images, projecting the measured data into the 3D space and computing the loss function for the point cloud normal. Despite its simplicity, our method called ToFNest proves to be efficient in terms of robustness and runtime. In order to validate ToFNest we performed extensive evaluations using both public and custom outdoor datasets. Compared with the state of the art methods, our algorithm is faster by an order of magnitude without losing precision on public datasets. The demo code is available on https://github.com/molnarszilard/ToFNest</description><subject>Cameras</subject><subject>Codes</subject><subject>Computer vision</subject><subject>Conferences</subject><subject>Estimation</subject><subject>Runtime</subject><subject>Three-dimensional displays</subject><issn>2473-9944</issn><isbn>9781665401913</isbn><isbn>1665401915</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjsFKw0AURUdBsNR-gQjzA6nvzZuZ5LmT0Gqh6KbqskySN3akSUqSjX9vwa4u5ywOV6kHhCUi8OOmLD-_nEUDSwMGlwAG3JVacF6g984CMtK1mhmbU8Zs7a1ajOMPAKBHxwQztdr16zcZpye9ijHVSbpJd_3QhqM-29SGKfWdjv2gzyBZH7N4TN-HSTdymg66Dq0MYbxTNzEcR1lcdq4-1qtd-Zpt31825fM2S0g0Za6ggFbQOaRCXGMa8o0HrvIAQhV7YhsoMrELWNRN47jwsYiuEqora2iu7v-7SUT2p-H8b_jds4c8z5n-ANUaTE4</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Molnar, Szilard</creator><creator>Kelenyi, Benjamin</creator><creator>Tamas, Levente</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>202110</creationdate><title>ToFNest: Efficient normal estimation for time-of-flight depth cameras</title><author>Molnar, Szilard ; Kelenyi, Benjamin ; Tamas, Levente</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i133t-583a14e155138e5d2d36d609b7a0e3b96394a3f9395a18cdd5986f8f5be3cb423</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Cameras</topic><topic>Codes</topic><topic>Computer vision</topic><topic>Conferences</topic><topic>Estimation</topic><topic>Runtime</topic><topic>Three-dimensional displays</topic><toplevel>online_resources</toplevel><creatorcontrib>Molnar, Szilard</creatorcontrib><creatorcontrib>Kelenyi, Benjamin</creatorcontrib><creatorcontrib>Tamas, Levente</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library Online</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Molnar, Szilard</au><au>Kelenyi, Benjamin</au><au>Tamas, Levente</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>ToFNest: Efficient normal estimation for time-of-flight depth cameras</atitle><btitle>2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW)</btitle><stitle>ICCVW</stitle><date>2021-10</date><risdate>2021</risdate><spage>1791</spage><epage>1798</epage><pages>1791-1798</pages><eissn>2473-9944</eissn><eisbn>9781665401913</eisbn><eisbn>1665401915</eisbn><coden>IEEPAD</coden><abstract>In this work, we propose an efficient normal estimation method for depth images acquired by Time-of-Flight (ToF) cameras based on feature pyramid networks (FPN). We perform the normal estimation starting from the 2D depth images, projecting the measured data into the 3D space and computing the loss function for the point cloud normal. Despite its simplicity, our method called ToFNest proves to be efficient in terms of robustness and runtime. In order to validate ToFNest we performed extensive evaluations using both public and custom outdoor datasets. Compared with the state of the art methods, our algorithm is faster by an order of magnitude without losing precision on public datasets. The demo code is available on https://github.com/molnarszilard/ToFNest</abstract><pub>IEEE</pub><doi>10.1109/ICCVW54120.2021.00205</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2473-9944 |
ispartof | 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2021, p.1791-1798 |
issn | 2473-9944 |
language | eng |
recordid | cdi_ieee_primary_9607779 |
source | IEEE Xplore All Conference Series |
subjects | Cameras Codes Computer vision Conferences Estimation Runtime Three-dimensional displays |
title | ToFNest: Efficient normal estimation for time-of-flight depth cameras |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T16%3A56%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=ToFNest:%20Efficient%20normal%20estimation%20for%20time-of-flight%20depth%20cameras&rft.btitle=2021%20IEEE/CVF%20International%20Conference%20on%20Computer%20Vision%20Workshops%20(ICCVW)&rft.au=Molnar,%20Szilard&rft.date=2021-10&rft.spage=1791&rft.epage=1798&rft.pages=1791-1798&rft.eissn=2473-9944&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ICCVW54120.2021.00205&rft.eisbn=9781665401913&rft.eisbn_list=1665401915&rft_dat=%3Cieee_CHZPO%3E9607779%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i133t-583a14e155138e5d2d36d609b7a0e3b96394a3f9395a18cdd5986f8f5be3cb423%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9607779&rfr_iscdi=true |