Loading…

Video Retrieval Queries of Large Scale Images: An Efficient Approach

We address the challenge for retrieving videos from large scale data base using images as query is necessary to implement for many applications. Here a symmetric comparison methodology for vectors Fisher is provided. It is queried for basic items with different degrees of clutter are rigorously inve...

Full description

Saved in:
Bibliographic Details
Main Authors: Mouli, D. Chandra, Kumar, G. Varun, Kiran, S. V., Kumar, Sanjeev
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 250
container_issue
container_start_page 247
container_title
container_volume
creator Mouli, D. Chandra
Kumar, G. Varun
Kiran, S. V.
Kumar, Sanjeev
description We address the challenge for retrieving videos from large scale data base using images as query is necessary to implement for many applications. Here a symmetric comparison methodology for vectors Fisher is provided. It is queried for basic items with different degrees of clutter are rigorously investigated. The advantages of these techniques are shown here. The aggregation of locally-based characteristics by shots is assessed. For the experiment, four different aggregation modes are offered. These combined modes help to reduce the expectancy and memory requirement of recovery by additional than '3X.' With the intention of growth, the proficiency and accuracy of the process of retrieval, here described a top K-Image videos queries. Numerous applications, for example content linking and product monitoring, need retrieving films from vast libraries utilising image queries. We provide a novel retrievals architecture wherein picture queries are immediately compared to the database video, considerably enhancing retrievals scalability over a reference point system that explorations the databases at the video frames levels.
doi_str_mv 10.1109/ISPCC53510.2021.9609382
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9609382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9609382</ieee_id><sourcerecordid>9609382</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-d3b42246df4e9897ecc87063832501d509d03da24395c8cbd8d0c2f96d2695923</originalsourceid><addsrcrecordid>eNotj81Kw0AURkdBsNY-gQvnBVLv3PnJjLsQqwYC_lTdlunMTR1Jm5BUwbe3YFffOZsDH2PXAuZCgLupls9lqaU-OAKKuTPgpMUTdiGM0Qq1Vvkpm6BRMrNG6HM2G8cvAJAIMtd6wu4-UqSOv9J-SPTjW_7yTQcaedfw2g8b4svgW-LV1m9ovOXFji-aJoVEuz0v-n7ofPi8ZGeNb0eaHXfK3u8Xb-VjVj89VGVRZ0kIu8-iXCtEZWKjyFmXUwg2ByOtRA0ianARZPSopNPBhnW0EQI2zkQ0TjuUU3b1301EtOqHtPXD7-p4Wv4Bp_dKWQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Video Retrieval Queries of Large Scale Images: An Efficient Approach</title><source>IEEE Xplore All Conference Series</source><creator>Mouli, D. Chandra ; Kumar, G. Varun ; Kiran, S. V. ; Kumar, Sanjeev</creator><creatorcontrib>Mouli, D. Chandra ; Kumar, G. Varun ; Kiran, S. V. ; Kumar, Sanjeev</creatorcontrib><description>We address the challenge for retrieving videos from large scale data base using images as query is necessary to implement for many applications. Here a symmetric comparison methodology for vectors Fisher is provided. It is queried for basic items with different degrees of clutter are rigorously investigated. The advantages of these techniques are shown here. The aggregation of locally-based characteristics by shots is assessed. For the experiment, four different aggregation modes are offered. These combined modes help to reduce the expectancy and memory requirement of recovery by additional than '3X.' With the intention of growth, the proficiency and accuracy of the process of retrieval, here described a top K-Image videos queries. Numerous applications, for example content linking and product monitoring, need retrieving films from vast libraries utilising image queries. We provide a novel retrievals architecture wherein picture queries are immediately compared to the database video, considerably enhancing retrievals scalability over a reference point system that explorations the databases at the video frames levels.</description><identifier>EISSN: 2643-8615</identifier><identifier>EISBN: 1665425547</identifier><identifier>EISBN: 9781665425544</identifier><identifier>DOI: 10.1109/ISPCC53510.2021.9609382</identifier><language>eng</language><publisher>IEEE</publisher><subject>Data base ; Image query ; Indexing ; Large scale ; Memory management ; Neural networks ; Productivity ; Scalability ; Video retrieval ; Visual search ; Visualization</subject><ispartof>2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), 2021, p.247-250</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9609382$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,776,780,785,786,23909,23910,25118,27902,54530,54907</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9609382$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Mouli, D. Chandra</creatorcontrib><creatorcontrib>Kumar, G. Varun</creatorcontrib><creatorcontrib>Kiran, S. V.</creatorcontrib><creatorcontrib>Kumar, Sanjeev</creatorcontrib><title>Video Retrieval Queries of Large Scale Images: An Efficient Approach</title><title>2021 6th International Conference on Signal Processing, Computing and Control (ISPCC)</title><addtitle>ISPCC</addtitle><description>We address the challenge for retrieving videos from large scale data base using images as query is necessary to implement for many applications. Here a symmetric comparison methodology for vectors Fisher is provided. It is queried for basic items with different degrees of clutter are rigorously investigated. The advantages of these techniques are shown here. The aggregation of locally-based characteristics by shots is assessed. For the experiment, four different aggregation modes are offered. These combined modes help to reduce the expectancy and memory requirement of recovery by additional than '3X.' With the intention of growth, the proficiency and accuracy of the process of retrieval, here described a top K-Image videos queries. Numerous applications, for example content linking and product monitoring, need retrieving films from vast libraries utilising image queries. We provide a novel retrievals architecture wherein picture queries are immediately compared to the database video, considerably enhancing retrievals scalability over a reference point system that explorations the databases at the video frames levels.</description><subject>Data base</subject><subject>Image query</subject><subject>Indexing</subject><subject>Large scale</subject><subject>Memory management</subject><subject>Neural networks</subject><subject>Productivity</subject><subject>Scalability</subject><subject>Video retrieval</subject><subject>Visual search</subject><subject>Visualization</subject><issn>2643-8615</issn><isbn>1665425547</isbn><isbn>9781665425544</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotj81Kw0AURkdBsNY-gQvnBVLv3PnJjLsQqwYC_lTdlunMTR1Jm5BUwbe3YFffOZsDH2PXAuZCgLupls9lqaU-OAKKuTPgpMUTdiGM0Qq1Vvkpm6BRMrNG6HM2G8cvAJAIMtd6wu4-UqSOv9J-SPTjW_7yTQcaedfw2g8b4svgW-LV1m9ovOXFji-aJoVEuz0v-n7ofPi8ZGeNb0eaHXfK3u8Xb-VjVj89VGVRZ0kIu8-iXCtEZWKjyFmXUwg2ByOtRA0ianARZPSopNPBhnW0EQI2zkQ0TjuUU3b1301EtOqHtPXD7-p4Wv4Bp_dKWQ</recordid><startdate>20211007</startdate><enddate>20211007</enddate><creator>Mouli, D. Chandra</creator><creator>Kumar, G. Varun</creator><creator>Kiran, S. V.</creator><creator>Kumar, Sanjeev</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope></search><sort><creationdate>20211007</creationdate><title>Video Retrieval Queries of Large Scale Images: An Efficient Approach</title><author>Mouli, D. Chandra ; Kumar, G. Varun ; Kiran, S. V. ; Kumar, Sanjeev</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-d3b42246df4e9897ecc87063832501d509d03da24395c8cbd8d0c2f96d2695923</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Data base</topic><topic>Image query</topic><topic>Indexing</topic><topic>Large scale</topic><topic>Memory management</topic><topic>Neural networks</topic><topic>Productivity</topic><topic>Scalability</topic><topic>Video retrieval</topic><topic>Visual search</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>Mouli, D. Chandra</creatorcontrib><creatorcontrib>Kumar, G. Varun</creatorcontrib><creatorcontrib>Kiran, S. V.</creatorcontrib><creatorcontrib>Kumar, Sanjeev</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Mouli, D. Chandra</au><au>Kumar, G. Varun</au><au>Kiran, S. V.</au><au>Kumar, Sanjeev</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Video Retrieval Queries of Large Scale Images: An Efficient Approach</atitle><btitle>2021 6th International Conference on Signal Processing, Computing and Control (ISPCC)</btitle><stitle>ISPCC</stitle><date>2021-10-07</date><risdate>2021</risdate><spage>247</spage><epage>250</epage><pages>247-250</pages><eissn>2643-8615</eissn><eisbn>1665425547</eisbn><eisbn>9781665425544</eisbn><abstract>We address the challenge for retrieving videos from large scale data base using images as query is necessary to implement for many applications. Here a symmetric comparison methodology for vectors Fisher is provided. It is queried for basic items with different degrees of clutter are rigorously investigated. The advantages of these techniques are shown here. The aggregation of locally-based characteristics by shots is assessed. For the experiment, four different aggregation modes are offered. These combined modes help to reduce the expectancy and memory requirement of recovery by additional than '3X.' With the intention of growth, the proficiency and accuracy of the process of retrieval, here described a top K-Image videos queries. Numerous applications, for example content linking and product monitoring, need retrieving films from vast libraries utilising image queries. We provide a novel retrievals architecture wherein picture queries are immediately compared to the database video, considerably enhancing retrievals scalability over a reference point system that explorations the databases at the video frames levels.</abstract><pub>IEEE</pub><doi>10.1109/ISPCC53510.2021.9609382</doi><tpages>4</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2643-8615
ispartof 2021 6th International Conference on Signal Processing, Computing and Control (ISPCC), 2021, p.247-250
issn 2643-8615
language eng
recordid cdi_ieee_primary_9609382
source IEEE Xplore All Conference Series
subjects Data base
Image query
Indexing
Large scale
Memory management
Neural networks
Productivity
Scalability
Video retrieval
Visual search
Visualization
title Video Retrieval Queries of Large Scale Images: An Efficient Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A24%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Video%20Retrieval%20Queries%20of%20Large%20Scale%20Images:%20An%20Efficient%20Approach&rft.btitle=2021%206th%20International%20Conference%20on%20Signal%20Processing,%20Computing%20and%20Control%20(ISPCC)&rft.au=Mouli,%20D.%20Chandra&rft.date=2021-10-07&rft.spage=247&rft.epage=250&rft.pages=247-250&rft.eissn=2643-8615&rft_id=info:doi/10.1109/ISPCC53510.2021.9609382&rft.eisbn=1665425547&rft.eisbn_list=9781665425544&rft_dat=%3Cieee_CHZPO%3E9609382%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-d3b42246df4e9897ecc87063832501d509d03da24395c8cbd8d0c2f96d2695923%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9609382&rfr_iscdi=true