Loading…

Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning

We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industr...

Full description

Saved in:
Bibliographic Details
Main Authors: Kuo, Yen-Ting, Lin, Wei-Chen, Chen, Chun, Hsieh, Chao-Ho, Li, James Chien-Mo, Jia-Wei Fang, Eric, Hsueh, Sung S.-Y.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 52
container_issue
container_start_page 47
container_title
container_volume
creator Kuo, Yen-Ting
Lin, Wei-Chen
Chen, Chun
Hsieh, Chao-Ho
Li, James Chien-Mo
Jia-Wei Fang, Eric
Hsueh, Sung S.-Y.
description We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.
doi_str_mv 10.1109/ITC50571.2021.00012
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9611347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9611347</ieee_id><sourcerecordid>9611347</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-c1c7c53df14131dc3254f7badb40861cc775c4b813eaa7fdad97c3769005e65e3</originalsourceid><addsrcrecordid>eNotjMtqwzAURNVCoWmaL8hGP2D3XsmS7GUwfQRcUqjTbZCl66DiR_Cj0L9vQroaznBmGFsjxIiQPW3LXIEyGAsQGAMAihu2ykyKWqsEdabULVsIadJICAX37GEcvwEEKAEL9vkeutDOLd-daLBT6I78q28meyT-MZAPbgp9x0N3pt7PVyppnPh-vLgb5-Z2bs7DH-IF2aE7t4_srrbNSKv_XLL9y3OZv0XF7nWbb4ooCJBT5NAZp6SvMUGJ3kmhktpU1lcJpBqdM0a5pEpRkrWm9tZnxkmjMwBFWpFcsvX1NxDR4TSE1g6_h0wjysTIPxgqUUs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning</title><source>IEEE Xplore All Conference Series</source><creator>Kuo, Yen-Ting ; Lin, Wei-Chen ; Chen, Chun ; Hsieh, Chao-Ho ; Li, James Chien-Mo ; Jia-Wei Fang, Eric ; Hsueh, Sung S.-Y.</creator><creatorcontrib>Kuo, Yen-Ting ; Lin, Wei-Chen ; Chen, Chun ; Hsieh, Chao-Ho ; Li, James Chien-Mo ; Jia-Wei Fang, Eric ; Hsueh, Sung S.-Y.</creatorcontrib><description>We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.</description><identifier>EISSN: 2378-2250</identifier><identifier>EISBN: 9781665416955</identifier><identifier>EISBN: 1665416955</identifier><identifier>DOI: 10.1109/ITC50571.2021.00012</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chip Performance Prediction ; Conferences ; Industries ; Machine Learning ; Process variation ; Ring oscillators ; Semiconductor device modeling ; Training ; Training data ; Voltage</subject><ispartof>2021 IEEE International Test Conference (ITC), 2021, p.47-52</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9611347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9611347$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuo, Yen-Ting</creatorcontrib><creatorcontrib>Lin, Wei-Chen</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Hsieh, Chao-Ho</creatorcontrib><creatorcontrib>Li, James Chien-Mo</creatorcontrib><creatorcontrib>Jia-Wei Fang, Eric</creatorcontrib><creatorcontrib>Hsueh, Sung S.-Y.</creatorcontrib><title>Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning</title><title>2021 IEEE International Test Conference (ITC)</title><addtitle>ITC</addtitle><description>We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.</description><subject>Chip Performance Prediction</subject><subject>Conferences</subject><subject>Industries</subject><subject>Machine Learning</subject><subject>Process variation</subject><subject>Ring oscillators</subject><subject>Semiconductor device modeling</subject><subject>Training</subject><subject>Training data</subject><subject>Voltage</subject><issn>2378-2250</issn><isbn>9781665416955</isbn><isbn>1665416955</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtqwzAURNVCoWmaL8hGP2D3XsmS7GUwfQRcUqjTbZCl66DiR_Cj0L9vQroaznBmGFsjxIiQPW3LXIEyGAsQGAMAihu2ykyKWqsEdabULVsIadJICAX37GEcvwEEKAEL9vkeutDOLd-daLBT6I78q28meyT-MZAPbgp9x0N3pt7PVyppnPh-vLgb5-Z2bs7DH-IF2aE7t4_srrbNSKv_XLL9y3OZv0XF7nWbb4ooCJBT5NAZp6SvMUGJ3kmhktpU1lcJpBqdM0a5pEpRkrWm9tZnxkmjMwBFWpFcsvX1NxDR4TSE1g6_h0wjysTIPxgqUUs</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Kuo, Yen-Ting</creator><creator>Lin, Wei-Chen</creator><creator>Chen, Chun</creator><creator>Hsieh, Chao-Ho</creator><creator>Li, James Chien-Mo</creator><creator>Jia-Wei Fang, Eric</creator><creator>Hsueh, Sung S.-Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202110</creationdate><title>Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning</title><author>Kuo, Yen-Ting ; Lin, Wei-Chen ; Chen, Chun ; Hsieh, Chao-Ho ; Li, James Chien-Mo ; Jia-Wei Fang, Eric ; Hsueh, Sung S.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-c1c7c53df14131dc3254f7badb40861cc775c4b813eaa7fdad97c3769005e65e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chip Performance Prediction</topic><topic>Conferences</topic><topic>Industries</topic><topic>Machine Learning</topic><topic>Process variation</topic><topic>Ring oscillators</topic><topic>Semiconductor device modeling</topic><topic>Training</topic><topic>Training data</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Yen-Ting</creatorcontrib><creatorcontrib>Lin, Wei-Chen</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Hsieh, Chao-Ho</creatorcontrib><creatorcontrib>Li, James Chien-Mo</creatorcontrib><creatorcontrib>Jia-Wei Fang, Eric</creatorcontrib><creatorcontrib>Hsueh, Sung S.-Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuo, Yen-Ting</au><au>Lin, Wei-Chen</au><au>Chen, Chun</au><au>Hsieh, Chao-Ho</au><au>Li, James Chien-Mo</au><au>Jia-Wei Fang, Eric</au><au>Hsueh, Sung S.-Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning</atitle><btitle>2021 IEEE International Test Conference (ITC)</btitle><stitle>ITC</stitle><date>2021-10</date><risdate>2021</risdate><spage>47</spage><epage>52</epage><pages>47-52</pages><eissn>2378-2250</eissn><eisbn>9781665416955</eisbn><eisbn>1665416955</eisbn><coden>IEEPAD</coden><abstract>We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.</abstract><pub>IEEE</pub><doi>10.1109/ITC50571.2021.00012</doi><tpages>6</tpages></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2378-2250
ispartof 2021 IEEE International Test Conference (ITC), 2021, p.47-52
issn 2378-2250
language eng
recordid cdi_ieee_primary_9611347
source IEEE Xplore All Conference Series
subjects Chip Performance Prediction
Conferences
Industries
Machine Learning
Process variation
Ring oscillators
Semiconductor device modeling
Training
Training data
Voltage
title Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Minimum%20Operating%20Voltage%20Prediction%20in%20Production%20Test%20Using%20Accumulative%20Learning&rft.btitle=2021%20IEEE%20International%20Test%20Conference%20(ITC)&rft.au=Kuo,%20Yen-Ting&rft.date=2021-10&rft.spage=47&rft.epage=52&rft.pages=47-52&rft.eissn=2378-2250&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ITC50571.2021.00012&rft.eisbn=9781665416955&rft.eisbn_list=1665416955&rft_dat=%3Cieee_CHZPO%3E9611347%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-c1c7c53df14131dc3254f7badb40861cc775c4b813eaa7fdad97c3769005e65e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9611347&rfr_iscdi=true