Loading…
Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning
We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industr...
Saved in:
Main Authors: | , , , , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 52 |
container_issue | |
container_start_page | 47 |
container_title | |
container_volume | |
creator | Kuo, Yen-Ting Lin, Wei-Chen Chen, Chun Hsieh, Chao-Ho Li, James Chien-Mo Jia-Wei Fang, Eric Hsueh, Sung S.-Y. |
description | We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training. |
doi_str_mv | 10.1109/ITC50571.2021.00012 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9611347</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9611347</ieee_id><sourcerecordid>9611347</sourcerecordid><originalsourceid>FETCH-LOGICAL-i203t-c1c7c53df14131dc3254f7badb40861cc775c4b813eaa7fdad97c3769005e65e3</originalsourceid><addsrcrecordid>eNotjMtqwzAURNVCoWmaL8hGP2D3XsmS7GUwfQRcUqjTbZCl66DiR_Cj0L9vQroaznBmGFsjxIiQPW3LXIEyGAsQGAMAihu2ykyKWqsEdabULVsIadJICAX37GEcvwEEKAEL9vkeutDOLd-daLBT6I78q28meyT-MZAPbgp9x0N3pt7PVyppnPh-vLgb5-Z2bs7DH-IF2aE7t4_srrbNSKv_XLL9y3OZv0XF7nWbb4ooCJBT5NAZp6SvMUGJ3kmhktpU1lcJpBqdM0a5pEpRkrWm9tZnxkmjMwBFWpFcsvX1NxDR4TSE1g6_h0wjysTIPxgqUUs</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning</title><source>IEEE Xplore All Conference Series</source><creator>Kuo, Yen-Ting ; Lin, Wei-Chen ; Chen, Chun ; Hsieh, Chao-Ho ; Li, James Chien-Mo ; Jia-Wei Fang, Eric ; Hsueh, Sung S.-Y.</creator><creatorcontrib>Kuo, Yen-Ting ; Lin, Wei-Chen ; Chen, Chun ; Hsieh, Chao-Ho ; Li, James Chien-Mo ; Jia-Wei Fang, Eric ; Hsueh, Sung S.-Y.</creatorcontrib><description>We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.</description><identifier>EISSN: 2378-2250</identifier><identifier>EISBN: 9781665416955</identifier><identifier>EISBN: 1665416955</identifier><identifier>DOI: 10.1109/ITC50571.2021.00012</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Chip Performance Prediction ; Conferences ; Industries ; Machine Learning ; Process variation ; Ring oscillators ; Semiconductor device modeling ; Training ; Training data ; Voltage</subject><ispartof>2021 IEEE International Test Conference (ITC), 2021, p.47-52</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9611347$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27924,54554,54931</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9611347$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Kuo, Yen-Ting</creatorcontrib><creatorcontrib>Lin, Wei-Chen</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Hsieh, Chao-Ho</creatorcontrib><creatorcontrib>Li, James Chien-Mo</creatorcontrib><creatorcontrib>Jia-Wei Fang, Eric</creatorcontrib><creatorcontrib>Hsueh, Sung S.-Y.</creatorcontrib><title>Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning</title><title>2021 IEEE International Test Conference (ITC)</title><addtitle>ITC</addtitle><description>We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.</description><subject>Chip Performance Prediction</subject><subject>Conferences</subject><subject>Industries</subject><subject>Machine Learning</subject><subject>Process variation</subject><subject>Ring oscillators</subject><subject>Semiconductor device modeling</subject><subject>Training</subject><subject>Training data</subject><subject>Voltage</subject><issn>2378-2250</issn><isbn>9781665416955</isbn><isbn>1665416955</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotjMtqwzAURNVCoWmaL8hGP2D3XsmS7GUwfQRcUqjTbZCl66DiR_Cj0L9vQroaznBmGFsjxIiQPW3LXIEyGAsQGAMAihu2ykyKWqsEdabULVsIadJICAX37GEcvwEEKAEL9vkeutDOLd-daLBT6I78q28meyT-MZAPbgp9x0N3pt7PVyppnPh-vLgb5-Z2bs7DH-IF2aE7t4_srrbNSKv_XLL9y3OZv0XF7nWbb4ooCJBT5NAZp6SvMUGJ3kmhktpU1lcJpBqdM0a5pEpRkrWm9tZnxkmjMwBFWpFcsvX1NxDR4TSE1g6_h0wjysTIPxgqUUs</recordid><startdate>202110</startdate><enddate>202110</enddate><creator>Kuo, Yen-Ting</creator><creator>Lin, Wei-Chen</creator><creator>Chen, Chun</creator><creator>Hsieh, Chao-Ho</creator><creator>Li, James Chien-Mo</creator><creator>Jia-Wei Fang, Eric</creator><creator>Hsueh, Sung S.-Y.</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>202110</creationdate><title>Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning</title><author>Kuo, Yen-Ting ; Lin, Wei-Chen ; Chen, Chun ; Hsieh, Chao-Ho ; Li, James Chien-Mo ; Jia-Wei Fang, Eric ; Hsueh, Sung S.-Y.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i203t-c1c7c53df14131dc3254f7badb40861cc775c4b813eaa7fdad97c3769005e65e3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Chip Performance Prediction</topic><topic>Conferences</topic><topic>Industries</topic><topic>Machine Learning</topic><topic>Process variation</topic><topic>Ring oscillators</topic><topic>Semiconductor device modeling</topic><topic>Training</topic><topic>Training data</topic><topic>Voltage</topic><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Yen-Ting</creatorcontrib><creatorcontrib>Lin, Wei-Chen</creatorcontrib><creatorcontrib>Chen, Chun</creatorcontrib><creatorcontrib>Hsieh, Chao-Ho</creatorcontrib><creatorcontrib>Li, James Chien-Mo</creatorcontrib><creatorcontrib>Jia-Wei Fang, Eric</creatorcontrib><creatorcontrib>Hsueh, Sung S.-Y.</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Kuo, Yen-Ting</au><au>Lin, Wei-Chen</au><au>Chen, Chun</au><au>Hsieh, Chao-Ho</au><au>Li, James Chien-Mo</au><au>Jia-Wei Fang, Eric</au><au>Hsueh, Sung S.-Y.</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning</atitle><btitle>2021 IEEE International Test Conference (ITC)</btitle><stitle>ITC</stitle><date>2021-10</date><risdate>2021</risdate><spage>47</spage><epage>52</epage><pages>47-52</pages><eissn>2378-2250</eissn><eisbn>9781665416955</eisbn><eisbn>1665416955</eisbn><coden>IEEPAD</coden><abstract>We propose a new methodology to predict minimum operating voltage (V min ) for production chips. In addition, we propose two new key features to improve the prediction accuracy. Our proposed accumulative learning can reduce the impact of lot-to-lot variations. Experimental results on two 7nm industry designs (about 1.2M chips from 142 lots) show that we can achieve above 95% good prediction. Our methodology can save 75% test time compared with traditional testing. To implement this method, we will need to have a separate test flow for the initial training and accumulative training.</abstract><pub>IEEE</pub><doi>10.1109/ITC50571.2021.00012</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2378-2250 |
ispartof | 2021 IEEE International Test Conference (ITC), 2021, p.47-52 |
issn | 2378-2250 |
language | eng |
recordid | cdi_ieee_primary_9611347 |
source | IEEE Xplore All Conference Series |
subjects | Chip Performance Prediction Conferences Industries Machine Learning Process variation Ring oscillators Semiconductor device modeling Training Training data Voltage |
title | Minimum Operating Voltage Prediction in Production Test Using Accumulative Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T16%3A33%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Minimum%20Operating%20Voltage%20Prediction%20in%20Production%20Test%20Using%20Accumulative%20Learning&rft.btitle=2021%20IEEE%20International%20Test%20Conference%20(ITC)&rft.au=Kuo,%20Yen-Ting&rft.date=2021-10&rft.spage=47&rft.epage=52&rft.pages=47-52&rft.eissn=2378-2250&rft.coden=IEEPAD&rft_id=info:doi/10.1109/ITC50571.2021.00012&rft.eisbn=9781665416955&rft.eisbn_list=1665416955&rft_dat=%3Cieee_CHZPO%3E9611347%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i203t-c1c7c53df14131dc3254f7badb40861cc775c4b813eaa7fdad97c3769005e65e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9611347&rfr_iscdi=true |