Loading…

Continuing development of a low density POS for PRS loads on Double-EAGLE

Summary form only given, as follows. We are continuing the development of a low density plasma opening switch (POS) on the Double-EAGLE pulsed power generator, running in a 250 ns mode. The goal is to shorten the pulse and efficiently drive a=100 ns imploding PRS source (an aluminum wire array). Thi...

Full description

Saved in:
Bibliographic Details
Main Authors: Levine, J.S., Chantrenne, S., Childers, K., Sincerny, P., Putman, S., Bailey, V., Corcoran, P., Spence, P., Ware, K., Kurucz, P.
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Summary form only given, as follows. We are continuing the development of a low density plasma opening switch (POS) on the Double-EAGLE pulsed power generator, running in a 250 ns mode. The goal is to shorten the pulse and efficiently drive a=100 ns imploding PRS source (an aluminum wire array). This will provide a proof-of-principle demonstration of an alternative approach to long implosion PRS sources that are being developed for Decade Quad and the next generation of pulsed power drivers. In our previous experiment, the upper and lower current paths of Double-EAGLE strip-plate geometry were connected upstream of the POS to test the operation of a single-sided low density switch at linear current densities required for Decade Quad. Our present efforts involve using the lower inductance geometry of a double-sided POS and a post-hole convolute connecting the current paths downstream of the POS, driving either an inductive shun or an aluminum wire array. These tests will attempt to demonstrate high opened POS impedance and minimum electron sheath flow ("launched electron flow") downstream of the POS. We will discuss the interactions of the two sides of the POS and of the POS with the loads. The implications for Decade Quad will also be addressed.
DOI:10.1109/PPPS.2001.961175