Loading…
Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization
Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly r...
Saved in:
Published in: | IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-17 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3 |
container_end_page | 17 |
container_issue | |
container_start_page | 1 |
container_title | IEEE transactions on geoscience and remote sensing |
container_volume | 60 |
creator | Huang, Shaoguang Zhang, Hongyan Pizurica, Aleksandra |
description | Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly redundant dictionaries of huge size, and the computational complexity of the resulting optimization problems becomes prohibitive for large-scale data. In this article, we propose a scalable subspace clustering method, which integrates the learning of a concise dictionary and robust subspace representation in a unified model. This reduces significantly the size of the involved optimization problems. We introduce a new adaptive spatial regularization for the representation coefficients, which incorporates spatial information of HSI and improves the robustness of the model to noise. We derive an effective solver based on alternating minimization and alternating direction method of multipliers (ADMMs) to solve the resulting optimization problem. Experimental results on four representative hyperspectral images show the effectiveness of the proposed method and excellent clustering performance relative to the state of the art. |
doi_str_mv | 10.1109/TGRS.2021.3127536 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9612216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9612216</ieee_id><sourcerecordid>2645245769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3</originalsourceid><addsrcrecordid>eNo9kF1rwjAUhsPYYM7tB4zdBHZdl6RJai7FbSoIA3XsMhzjqYtU2yWt4H79WpRdHQ487_l4CHnkbMA5My-ryWI5EEzwQcpFplJ9RXpcqWHCtJTXpMe40YkYGnFL7mLcMcal4lmPwLJZxwoc0nHRxBqDP2xpXgY6PVUYYoWuDlDQ2R62GOnRA331rvblAcKJzhHCoQt8-fqbjjZQ1f6IdIHbpoDgf6ED78lNDkXEh0vtk8_3t9V4msw_JrPxaJ44YdI6EUxmxkgYau3WCLnSShuVQXsnbPK2B-c2uWyhVKNcq5zlGTIOqdJcscylffJ8nluF8qfBWNtd2YRDu9IKLZWQKtOmpfiZcqGMMWBuq-D37TOWM9uZtJ1J25m0F5Nt5umc8Yj4zxvNheA6_QNvWHCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245769</pqid></control><display><type>article</type><title>Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Shaoguang ; Zhang, Hongyan ; Pizurica, Aleksandra</creator><creatorcontrib>Huang, Shaoguang ; Zhang, Hongyan ; Pizurica, Aleksandra</creatorcontrib><description>Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly redundant dictionaries of huge size, and the computational complexity of the resulting optimization problems becomes prohibitive for large-scale data. In this article, we propose a scalable subspace clustering method, which integrates the learning of a concise dictionary and robust subspace representation in a unified model. This reduces significantly the size of the involved optimization problems. We introduce a new adaptive spatial regularization for the representation coefficients, which incorporates spatial information of HSI and improves the robustness of the model to noise. We derive an effective solver based on alternating minimization and alternating direction method of multipliers (ADMMs) to solve the resulting optimization problem. Experimental results on four representative hyperspectral images show the effectiveness of the proposed method and excellent clustering performance relative to the state of the art.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3127536</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering methods ; Coefficients ; Computational modeling ; Computer applications ; Data models ; Dictionaries ; Glossaries ; hyperspectral images ; Hyperspectral imaging ; Learning ; Machine learning ; Optimization ; Regularization ; Representations ; Sparse matrices ; Spatial data ; Subspace methods ; subspace representation ; Subspaces</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3</citedby><cites>FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3</cites><orcidid>0000-0001-5439-5018 ; 0000-0002-9322-4999 ; 0000-0002-7894-5755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9612216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Huang, Shaoguang</creatorcontrib><creatorcontrib>Zhang, Hongyan</creatorcontrib><creatorcontrib>Pizurica, Aleksandra</creatorcontrib><title>Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly redundant dictionaries of huge size, and the computational complexity of the resulting optimization problems becomes prohibitive for large-scale data. In this article, we propose a scalable subspace clustering method, which integrates the learning of a concise dictionary and robust subspace representation in a unified model. This reduces significantly the size of the involved optimization problems. We introduce a new adaptive spatial regularization for the representation coefficients, which incorporates spatial information of HSI and improves the robustness of the model to noise. We derive an effective solver based on alternating minimization and alternating direction method of multipliers (ADMMs) to solve the resulting optimization problem. Experimental results on four representative hyperspectral images show the effectiveness of the proposed method and excellent clustering performance relative to the state of the art.</description><subject>Clustering</subject><subject>Clustering methods</subject><subject>Coefficients</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Data models</subject><subject>Dictionaries</subject><subject>Glossaries</subject><subject>hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Representations</subject><subject>Sparse matrices</subject><subject>Spatial data</subject><subject>Subspace methods</subject><subject>subspace representation</subject><subject>Subspaces</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1rwjAUhsPYYM7tB4zdBHZdl6RJai7FbSoIA3XsMhzjqYtU2yWt4H79WpRdHQ487_l4CHnkbMA5My-ryWI5EEzwQcpFplJ9RXpcqWHCtJTXpMe40YkYGnFL7mLcMcal4lmPwLJZxwoc0nHRxBqDP2xpXgY6PVUYYoWuDlDQ2R62GOnRA331rvblAcKJzhHCoQt8-fqbjjZQ1f6IdIHbpoDgf6ED78lNDkXEh0vtk8_3t9V4msw_JrPxaJ44YdI6EUxmxkgYau3WCLnSShuVQXsnbPK2B-c2uWyhVKNcq5zlGTIOqdJcscylffJ8nluF8qfBWNtd2YRDu9IKLZWQKtOmpfiZcqGMMWBuq-D37TOWM9uZtJ1J25m0F5Nt5umc8Yj4zxvNheA6_QNvWHCA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Shaoguang</creator><creator>Zhang, Hongyan</creator><creator>Pizurica, Aleksandra</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5439-5018</orcidid><orcidid>https://orcid.org/0000-0002-9322-4999</orcidid><orcidid>https://orcid.org/0000-0002-7894-5755</orcidid></search><sort><creationdate>2022</creationdate><title>Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization</title><author>Huang, Shaoguang ; Zhang, Hongyan ; Pizurica, Aleksandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clustering</topic><topic>Clustering methods</topic><topic>Coefficients</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Data models</topic><topic>Dictionaries</topic><topic>Glossaries</topic><topic>hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Representations</topic><topic>Sparse matrices</topic><topic>Spatial data</topic><topic>Subspace methods</topic><topic>subspace representation</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shaoguang</creatorcontrib><creatorcontrib>Zhang, Hongyan</creatorcontrib><creatorcontrib>Pizurica, Aleksandra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shaoguang</au><au>Zhang, Hongyan</au><au>Pizurica, Aleksandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly redundant dictionaries of huge size, and the computational complexity of the resulting optimization problems becomes prohibitive for large-scale data. In this article, we propose a scalable subspace clustering method, which integrates the learning of a concise dictionary and robust subspace representation in a unified model. This reduces significantly the size of the involved optimization problems. We introduce a new adaptive spatial regularization for the representation coefficients, which incorporates spatial information of HSI and improves the robustness of the model to noise. We derive an effective solver based on alternating minimization and alternating direction method of multipliers (ADMMs) to solve the resulting optimization problem. Experimental results on four representative hyperspectral images show the effectiveness of the proposed method and excellent clustering performance relative to the state of the art.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3127536</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5439-5018</orcidid><orcidid>https://orcid.org/0000-0002-9322-4999</orcidid><orcidid>https://orcid.org/0000-0002-7894-5755</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0196-2892 |
ispartof | IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17 |
issn | 0196-2892 1558-0644 |
language | eng |
recordid | cdi_ieee_primary_9612216 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Clustering Clustering methods Coefficients Computational modeling Computer applications Data models Dictionaries Glossaries hyperspectral images Hyperspectral imaging Learning Machine learning Optimization Regularization Representations Sparse matrices Spatial data Subspace methods subspace representation Subspaces |
title | Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace%20Clustering%20for%20Hyperspectral%20Images%20via%20Dictionary%20Learning%20With%20Adaptive%20Regularization&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Huang,%20Shaoguang&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3127536&rft_dat=%3Cproquest_ieee_%3E2645245769%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645245769&rft_id=info:pmid/&rft_ieee_id=9612216&rfr_iscdi=true |