Loading…

Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization

Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly r...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2022, Vol.60, p.1-17
Main Authors: Huang, Shaoguang, Zhang, Hongyan, Pizurica, Aleksandra
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3
cites cdi_FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3
container_end_page 17
container_issue
container_start_page 1
container_title IEEE transactions on geoscience and remote sensing
container_volume 60
creator Huang, Shaoguang
Zhang, Hongyan
Pizurica, Aleksandra
description Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly redundant dictionaries of huge size, and the computational complexity of the resulting optimization problems becomes prohibitive for large-scale data. In this article, we propose a scalable subspace clustering method, which integrates the learning of a concise dictionary and robust subspace representation in a unified model. This reduces significantly the size of the involved optimization problems. We introduce a new adaptive spatial regularization for the representation coefficients, which incorporates spatial information of HSI and improves the robustness of the model to noise. We derive an effective solver based on alternating minimization and alternating direction method of multipliers (ADMMs) to solve the resulting optimization problem. Experimental results on four representative hyperspectral images show the effectiveness of the proposed method and excellent clustering performance relative to the state of the art.
doi_str_mv 10.1109/TGRS.2021.3127536
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9612216</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9612216</ieee_id><sourcerecordid>2645245769</sourcerecordid><originalsourceid>FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3</originalsourceid><addsrcrecordid>eNo9kF1rwjAUhsPYYM7tB4zdBHZdl6RJai7FbSoIA3XsMhzjqYtU2yWt4H79WpRdHQ487_l4CHnkbMA5My-ryWI5EEzwQcpFplJ9RXpcqWHCtJTXpMe40YkYGnFL7mLcMcal4lmPwLJZxwoc0nHRxBqDP2xpXgY6PVUYYoWuDlDQ2R62GOnRA331rvblAcKJzhHCoQt8-fqbjjZQ1f6IdIHbpoDgf6ED78lNDkXEh0vtk8_3t9V4msw_JrPxaJ44YdI6EUxmxkgYau3WCLnSShuVQXsnbPK2B-c2uWyhVKNcq5zlGTIOqdJcscylffJ8nluF8qfBWNtd2YRDu9IKLZWQKtOmpfiZcqGMMWBuq-D37TOWM9uZtJ1J25m0F5Nt5umc8Yj4zxvNheA6_QNvWHCA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2645245769</pqid></control><display><type>article</type><title>Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Huang, Shaoguang ; Zhang, Hongyan ; Pizurica, Aleksandra</creator><creatorcontrib>Huang, Shaoguang ; Zhang, Hongyan ; Pizurica, Aleksandra</creatorcontrib><description>Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly redundant dictionaries of huge size, and the computational complexity of the resulting optimization problems becomes prohibitive for large-scale data. In this article, we propose a scalable subspace clustering method, which integrates the learning of a concise dictionary and robust subspace representation in a unified model. This reduces significantly the size of the involved optimization problems. We introduce a new adaptive spatial regularization for the representation coefficients, which incorporates spatial information of HSI and improves the robustness of the model to noise. We derive an effective solver based on alternating minimization and alternating direction method of multipliers (ADMMs) to solve the resulting optimization problem. Experimental results on four representative hyperspectral images show the effectiveness of the proposed method and excellent clustering performance relative to the state of the art.</description><identifier>ISSN: 0196-2892</identifier><identifier>EISSN: 1558-0644</identifier><identifier>DOI: 10.1109/TGRS.2021.3127536</identifier><identifier>CODEN: IGRSD2</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Clustering ; Clustering methods ; Coefficients ; Computational modeling ; Computer applications ; Data models ; Dictionaries ; Glossaries ; hyperspectral images ; Hyperspectral imaging ; Learning ; Machine learning ; Optimization ; Regularization ; Representations ; Sparse matrices ; Spatial data ; Subspace methods ; subspace representation ; Subspaces</subject><ispartof>IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3</citedby><cites>FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3</cites><orcidid>0000-0001-5439-5018 ; 0000-0002-9322-4999 ; 0000-0002-7894-5755</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9612216$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,4024,27923,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Huang, Shaoguang</creatorcontrib><creatorcontrib>Zhang, Hongyan</creatorcontrib><creatorcontrib>Pizurica, Aleksandra</creatorcontrib><title>Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization</title><title>IEEE transactions on geoscience and remote sensing</title><addtitle>TGRS</addtitle><description>Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly redundant dictionaries of huge size, and the computational complexity of the resulting optimization problems becomes prohibitive for large-scale data. In this article, we propose a scalable subspace clustering method, which integrates the learning of a concise dictionary and robust subspace representation in a unified model. This reduces significantly the size of the involved optimization problems. We introduce a new adaptive spatial regularization for the representation coefficients, which incorporates spatial information of HSI and improves the robustness of the model to noise. We derive an effective solver based on alternating minimization and alternating direction method of multipliers (ADMMs) to solve the resulting optimization problem. Experimental results on four representative hyperspectral images show the effectiveness of the proposed method and excellent clustering performance relative to the state of the art.</description><subject>Clustering</subject><subject>Clustering methods</subject><subject>Coefficients</subject><subject>Computational modeling</subject><subject>Computer applications</subject><subject>Data models</subject><subject>Dictionaries</subject><subject>Glossaries</subject><subject>hyperspectral images</subject><subject>Hyperspectral imaging</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Optimization</subject><subject>Regularization</subject><subject>Representations</subject><subject>Sparse matrices</subject><subject>Spatial data</subject><subject>Subspace methods</subject><subject>subspace representation</subject><subject>Subspaces</subject><issn>0196-2892</issn><issn>1558-0644</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNo9kF1rwjAUhsPYYM7tB4zdBHZdl6RJai7FbSoIA3XsMhzjqYtU2yWt4H79WpRdHQ487_l4CHnkbMA5My-ryWI5EEzwQcpFplJ9RXpcqWHCtJTXpMe40YkYGnFL7mLcMcal4lmPwLJZxwoc0nHRxBqDP2xpXgY6PVUYYoWuDlDQ2R62GOnRA331rvblAcKJzhHCoQt8-fqbjjZQ1f6IdIHbpoDgf6ED78lNDkXEh0vtk8_3t9V4msw_JrPxaJ44YdI6EUxmxkgYau3WCLnSShuVQXsnbPK2B-c2uWyhVKNcq5zlGTIOqdJcscylffJ8nluF8qfBWNtd2YRDu9IKLZWQKtOmpfiZcqGMMWBuq-D37TOWM9uZtJ1J25m0F5Nt5umc8Yj4zxvNheA6_QNvWHCA</recordid><startdate>2022</startdate><enddate>2022</enddate><creator>Huang, Shaoguang</creator><creator>Zhang, Hongyan</creator><creator>Pizurica, Aleksandra</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7UA</scope><scope>8FD</scope><scope>C1K</scope><scope>F1W</scope><scope>FR3</scope><scope>H8D</scope><scope>H96</scope><scope>KR7</scope><scope>L.G</scope><scope>L7M</scope><orcidid>https://orcid.org/0000-0001-5439-5018</orcidid><orcidid>https://orcid.org/0000-0002-9322-4999</orcidid><orcidid>https://orcid.org/0000-0002-7894-5755</orcidid></search><sort><creationdate>2022</creationdate><title>Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization</title><author>Huang, Shaoguang ; Zhang, Hongyan ; Pizurica, Aleksandra</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Clustering</topic><topic>Clustering methods</topic><topic>Coefficients</topic><topic>Computational modeling</topic><topic>Computer applications</topic><topic>Data models</topic><topic>Dictionaries</topic><topic>Glossaries</topic><topic>hyperspectral images</topic><topic>Hyperspectral imaging</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Optimization</topic><topic>Regularization</topic><topic>Representations</topic><topic>Sparse matrices</topic><topic>Spatial data</topic><topic>Subspace methods</topic><topic>subspace representation</topic><topic>Subspaces</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Huang, Shaoguang</creatorcontrib><creatorcontrib>Zhang, Hongyan</creatorcontrib><creatorcontrib>Pizurica, Aleksandra</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Water Resources Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy &amp; Non-Living Resources</collection><collection>Civil Engineering Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>IEEE transactions on geoscience and remote sensing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Huang, Shaoguang</au><au>Zhang, Hongyan</au><au>Pizurica, Aleksandra</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization</atitle><jtitle>IEEE transactions on geoscience and remote sensing</jtitle><stitle>TGRS</stitle><date>2022</date><risdate>2022</risdate><volume>60</volume><spage>1</spage><epage>17</epage><pages>1-17</pages><issn>0196-2892</issn><eissn>1558-0644</eissn><coden>IGRSD2</coden><abstract>Sparse subspace clustering (SSC) has emerged as an effective approach for the automatic analysis of hyperspectral images (HSI). Traditional SSC-based approaches employ the input HSI data as a dictionary of atoms, in terms of which all the data samples are linearly represented. This leads to highly redundant dictionaries of huge size, and the computational complexity of the resulting optimization problems becomes prohibitive for large-scale data. In this article, we propose a scalable subspace clustering method, which integrates the learning of a concise dictionary and robust subspace representation in a unified model. This reduces significantly the size of the involved optimization problems. We introduce a new adaptive spatial regularization for the representation coefficients, which incorporates spatial information of HSI and improves the robustness of the model to noise. We derive an effective solver based on alternating minimization and alternating direction method of multipliers (ADMMs) to solve the resulting optimization problem. Experimental results on four representative hyperspectral images show the effectiveness of the proposed method and excellent clustering performance relative to the state of the art.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/TGRS.2021.3127536</doi><tpages>17</tpages><orcidid>https://orcid.org/0000-0001-5439-5018</orcidid><orcidid>https://orcid.org/0000-0002-9322-4999</orcidid><orcidid>https://orcid.org/0000-0002-7894-5755</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 0196-2892
ispartof IEEE transactions on geoscience and remote sensing, 2022, Vol.60, p.1-17
issn 0196-2892
1558-0644
language eng
recordid cdi_ieee_primary_9612216
source IEEE Electronic Library (IEL) Journals
subjects Clustering
Clustering methods
Coefficients
Computational modeling
Computer applications
Data models
Dictionaries
Glossaries
hyperspectral images
Hyperspectral imaging
Learning
Machine learning
Optimization
Regularization
Representations
Sparse matrices
Spatial data
Subspace methods
subspace representation
Subspaces
title Subspace Clustering for Hyperspectral Images via Dictionary Learning With Adaptive Regularization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A08%3A42IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Subspace%20Clustering%20for%20Hyperspectral%20Images%20via%20Dictionary%20Learning%20With%20Adaptive%20Regularization&rft.jtitle=IEEE%20transactions%20on%20geoscience%20and%20remote%20sensing&rft.au=Huang,%20Shaoguang&rft.date=2022&rft.volume=60&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.issn=0196-2892&rft.eissn=1558-0644&rft.coden=IGRSD2&rft_id=info:doi/10.1109/TGRS.2021.3127536&rft_dat=%3Cproquest_ieee_%3E2645245769%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c293t-2047994a866cbeaf5656957a145adfaf5accdf447936e4b5f0f7e01a3561507c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2645245769&rft_id=info:pmid/&rft_ieee_id=9612216&rfr_iscdi=true