Loading…
Adaptive CLF-MPC With Application to Quadrupedal Robots
Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used i...
Saved in:
Published in: | IEEE robotics and automation letters 2022-01, Vol.7 (1), p.565-572 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3 |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3 |
container_end_page | 572 |
container_issue | 1 |
container_start_page | 565 |
container_title | IEEE robotics and automation letters |
container_volume | 7 |
creator | Minniti, Maria Vittoria Grandia, Ruben Farshidian, Farbod Hutter, Marco |
description | Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used in disaster scenarios to remove dangerous material or carry injured people. It is thus essential to develop planning algorithms that can enable complex robots to perform motion and manipulation tasks accurately. In addition, online adaptation mechanisms with respect to new, unknown environments are needed. In this work, we impose that the optimal state-input trajectories generated by Model Predictive Control (MPC) satisfy the Lyapunov function criterion derived in adaptive control for robotic systems. As a result, we combine the stability guarantees provided by Control Lyapunov Functions (CLFs) and the optimality offered by MPC in a unified adaptive framework, yielding an improved performance during the robot's interaction with unknown objects. We validate the proposed approach in simulation and hardware tests on a quadrupedal robot carrying un-modeled payloads and pulling heavy boxes. |
doi_str_mv | 10.1109/LRA.2021.3128697 |
format | article |
fullrecord | <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9618829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9618829</ieee_id><sourcerecordid>2607875705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOObugpeC59aXZGmSYylOhYo6FI8haVPsqEtNUsH_3o4O8fTe431_wAehSwwZxiBvqm2RESA4o5iIXPITtCCU85TyPD_9t5-jVQg7AMCMcCrZAvGi0UPsvm1SVpv08blM3rv4kRTD0He1jp3bJ9ElL6Nu_DjYRvfJ1hkXwwU6a3Uf7Oo4l-htc_ta3qfV091DWVRpTSSOaS4NlUKAlI2xgjFhJBCzloy2ApggmhNgVNftdFg2PY02vAVBbVOvjbV0ia7n3MG7r9GGqHZu9PupUpEcuOCMTwFLBLOq9i4Eb1s1-O5T-x-FQR0IqYmQOhBSR0KT5Wq2dNbaP7nMsRBE0l8_7F8z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607875705</pqid></control><display><type>article</type><title>Adaptive CLF-MPC With Application to Quadrupedal Robots</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Minniti, Maria Vittoria ; Grandia, Ruben ; Farshidian, Farbod ; Hutter, Marco</creator><creatorcontrib>Minniti, Maria Vittoria ; Grandia, Ruben ; Farshidian, Farbod ; Hutter, Marco</creatorcontrib><description>Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used in disaster scenarios to remove dangerous material or carry injured people. It is thus essential to develop planning algorithms that can enable complex robots to perform motion and manipulation tasks accurately. In addition, online adaptation mechanisms with respect to new, unknown environments are needed. In this work, we impose that the optimal state-input trajectories generated by Model Predictive Control (MPC) satisfy the Lyapunov function criterion derived in adaptive control for robotic systems. As a result, we combine the stability guarantees provided by Control Lyapunov Functions (CLFs) and the optimality offered by MPC in a unified adaptive framework, yielding an improved performance during the robot's interaction with unknown objects. We validate the proposed approach in simulation and hardware tests on a quadrupedal robot carrying un-modeled payloads and pulling heavy boxes.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3128697</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Algorithms ; Control stability ; Legged robots ; Liapunov functions ; Lyapunov methods ; optimization and optimal control ; Payloads ; Predictive control ; Robot control ; Robot dynamics ; Robots ; robust/adaptive control ; Stability criteria ; Task complexity ; Trajectory optimization ; Uncertainty ; Unknown environments</subject><ispartof>IEEE robotics and automation letters, 2022-01, Vol.7 (1), p.565-572</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3</citedby><cites>FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3</cites><orcidid>0000-0001-7272-0937 ; 0000-0002-4285-4990 ; 0000-0001-8269-6272 ; 0000-0002-8971-6843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9618829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Minniti, Maria Vittoria</creatorcontrib><creatorcontrib>Grandia, Ruben</creatorcontrib><creatorcontrib>Farshidian, Farbod</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><title>Adaptive CLF-MPC With Application to Quadrupedal Robots</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used in disaster scenarios to remove dangerous material or carry injured people. It is thus essential to develop planning algorithms that can enable complex robots to perform motion and manipulation tasks accurately. In addition, online adaptation mechanisms with respect to new, unknown environments are needed. In this work, we impose that the optimal state-input trajectories generated by Model Predictive Control (MPC) satisfy the Lyapunov function criterion derived in adaptive control for robotic systems. As a result, we combine the stability guarantees provided by Control Lyapunov Functions (CLFs) and the optimality offered by MPC in a unified adaptive framework, yielding an improved performance during the robot's interaction with unknown objects. We validate the proposed approach in simulation and hardware tests on a quadrupedal robot carrying un-modeled payloads and pulling heavy boxes.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Control stability</subject><subject>Legged robots</subject><subject>Liapunov functions</subject><subject>Lyapunov methods</subject><subject>optimization and optimal control</subject><subject>Payloads</subject><subject>Predictive control</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>robust/adaptive control</subject><subject>Stability criteria</subject><subject>Task complexity</subject><subject>Trajectory optimization</subject><subject>Uncertainty</subject><subject>Unknown environments</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAUx4MoOObugpeC59aXZGmSYylOhYo6FI8haVPsqEtNUsH_3o4O8fTe431_wAehSwwZxiBvqm2RESA4o5iIXPITtCCU85TyPD_9t5-jVQg7AMCMcCrZAvGi0UPsvm1SVpv08blM3rv4kRTD0He1jp3bJ9ElL6Nu_DjYRvfJ1hkXwwU6a3Uf7Oo4l-htc_ta3qfV091DWVRpTSSOaS4NlUKAlI2xgjFhJBCzloy2ApggmhNgVNftdFg2PY02vAVBbVOvjbV0ia7n3MG7r9GGqHZu9PupUpEcuOCMTwFLBLOq9i4Eb1s1-O5T-x-FQR0IqYmQOhBSR0KT5Wq2dNbaP7nMsRBE0l8_7F8z</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Minniti, Maria Vittoria</creator><creator>Grandia, Ruben</creator><creator>Farshidian, Farbod</creator><creator>Hutter, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7272-0937</orcidid><orcidid>https://orcid.org/0000-0002-4285-4990</orcidid><orcidid>https://orcid.org/0000-0001-8269-6272</orcidid><orcidid>https://orcid.org/0000-0002-8971-6843</orcidid></search><sort><creationdate>202201</creationdate><title>Adaptive CLF-MPC With Application to Quadrupedal Robots</title><author>Minniti, Maria Vittoria ; Grandia, Ruben ; Farshidian, Farbod ; Hutter, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Control stability</topic><topic>Legged robots</topic><topic>Liapunov functions</topic><topic>Lyapunov methods</topic><topic>optimization and optimal control</topic><topic>Payloads</topic><topic>Predictive control</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>robust/adaptive control</topic><topic>Stability criteria</topic><topic>Task complexity</topic><topic>Trajectory optimization</topic><topic>Uncertainty</topic><topic>Unknown environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minniti, Maria Vittoria</creatorcontrib><creatorcontrib>Grandia, Ruben</creatorcontrib><creatorcontrib>Farshidian, Farbod</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minniti, Maria Vittoria</au><au>Grandia, Ruben</au><au>Farshidian, Farbod</au><au>Hutter, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive CLF-MPC With Application to Quadrupedal Robots</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-01</date><risdate>2022</risdate><volume>7</volume><issue>1</issue><spage>565</spage><epage>572</epage><pages>565-572</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used in disaster scenarios to remove dangerous material or carry injured people. It is thus essential to develop planning algorithms that can enable complex robots to perform motion and manipulation tasks accurately. In addition, online adaptation mechanisms with respect to new, unknown environments are needed. In this work, we impose that the optimal state-input trajectories generated by Model Predictive Control (MPC) satisfy the Lyapunov function criterion derived in adaptive control for robotic systems. As a result, we combine the stability guarantees provided by Control Lyapunov Functions (CLFs) and the optimality offered by MPC in a unified adaptive framework, yielding an improved performance during the robot's interaction with unknown objects. We validate the proposed approach in simulation and hardware tests on a quadrupedal robot carrying un-modeled payloads and pulling heavy boxes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3128697</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7272-0937</orcidid><orcidid>https://orcid.org/0000-0002-4285-4990</orcidid><orcidid>https://orcid.org/0000-0001-8269-6272</orcidid><orcidid>https://orcid.org/0000-0002-8971-6843</orcidid></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2377-3766 |
ispartof | IEEE robotics and automation letters, 2022-01, Vol.7 (1), p.565-572 |
issn | 2377-3766 2377-3766 |
language | eng |
recordid | cdi_ieee_primary_9618829 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Adaptation models Adaptive control Algorithms Control stability Legged robots Liapunov functions Lyapunov methods optimization and optimal control Payloads Predictive control Robot control Robot dynamics Robots robust/adaptive control Stability criteria Task complexity Trajectory optimization Uncertainty Unknown environments |
title | Adaptive CLF-MPC With Application to Quadrupedal Robots |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20CLF-MPC%20With%20Application%20to%20Quadrupedal%20Robots&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Minniti,%20Maria%20Vittoria&rft.date=2022-01&rft.volume=7&rft.issue=1&rft.spage=565&rft.epage=572&rft.pages=565-572&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3128697&rft_dat=%3Cproquest_ieee_%3E2607875705%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607875705&rft_id=info:pmid/&rft_ieee_id=9618829&rfr_iscdi=true |