Loading…

Adaptive CLF-MPC With Application to Quadrupedal Robots

Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used i...

Full description

Saved in:
Bibliographic Details
Published in:IEEE robotics and automation letters 2022-01, Vol.7 (1), p.565-572
Main Authors: Minniti, Maria Vittoria, Grandia, Ruben, Farshidian, Farbod, Hutter, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3
cites cdi_FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3
container_end_page 572
container_issue 1
container_start_page 565
container_title IEEE robotics and automation letters
container_volume 7
creator Minniti, Maria Vittoria
Grandia, Ruben
Farshidian, Farbod
Hutter, Marco
description Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used in disaster scenarios to remove dangerous material or carry injured people. It is thus essential to develop planning algorithms that can enable complex robots to perform motion and manipulation tasks accurately. In addition, online adaptation mechanisms with respect to new, unknown environments are needed. In this work, we impose that the optimal state-input trajectories generated by Model Predictive Control (MPC) satisfy the Lyapunov function criterion derived in adaptive control for robotic systems. As a result, we combine the stability guarantees provided by Control Lyapunov Functions (CLFs) and the optimality offered by MPC in a unified adaptive framework, yielding an improved performance during the robot's interaction with unknown objects. We validate the proposed approach in simulation and hardware tests on a quadrupedal robot carrying un-modeled payloads and pulling heavy boxes.
doi_str_mv 10.1109/LRA.2021.3128697
format article
fullrecord <record><control><sourceid>proquest_ieee_</sourceid><recordid>TN_cdi_ieee_primary_9618829</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9618829</ieee_id><sourcerecordid>2607875705</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3</originalsourceid><addsrcrecordid>eNpNkM9LwzAUx4MoOObugpeC59aXZGmSYylOhYo6FI8haVPsqEtNUsH_3o4O8fTe431_wAehSwwZxiBvqm2RESA4o5iIXPITtCCU85TyPD_9t5-jVQg7AMCMcCrZAvGi0UPsvm1SVpv08blM3rv4kRTD0He1jp3bJ9ElL6Nu_DjYRvfJ1hkXwwU6a3Uf7Oo4l-htc_ta3qfV091DWVRpTSSOaS4NlUKAlI2xgjFhJBCzloy2ApggmhNgVNftdFg2PY02vAVBbVOvjbV0ia7n3MG7r9GGqHZu9PupUpEcuOCMTwFLBLOq9i4Eb1s1-O5T-x-FQR0IqYmQOhBSR0KT5Wq2dNbaP7nMsRBE0l8_7F8z</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2607875705</pqid></control><display><type>article</type><title>Adaptive CLF-MPC With Application to Quadrupedal Robots</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Minniti, Maria Vittoria ; Grandia, Ruben ; Farshidian, Farbod ; Hutter, Marco</creator><creatorcontrib>Minniti, Maria Vittoria ; Grandia, Ruben ; Farshidian, Farbod ; Hutter, Marco</creatorcontrib><description>Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used in disaster scenarios to remove dangerous material or carry injured people. It is thus essential to develop planning algorithms that can enable complex robots to perform motion and manipulation tasks accurately. In addition, online adaptation mechanisms with respect to new, unknown environments are needed. In this work, we impose that the optimal state-input trajectories generated by Model Predictive Control (MPC) satisfy the Lyapunov function criterion derived in adaptive control for robotic systems. As a result, we combine the stability guarantees provided by Control Lyapunov Functions (CLFs) and the optimality offered by MPC in a unified adaptive framework, yielding an improved performance during the robot's interaction with unknown objects. We validate the proposed approach in simulation and hardware tests on a quadrupedal robot carrying un-modeled payloads and pulling heavy boxes.</description><identifier>ISSN: 2377-3766</identifier><identifier>EISSN: 2377-3766</identifier><identifier>DOI: 10.1109/LRA.2021.3128697</identifier><identifier>CODEN: IRALC6</identifier><language>eng</language><publisher>Piscataway: IEEE</publisher><subject>Adaptation models ; Adaptive control ; Algorithms ; Control stability ; Legged robots ; Liapunov functions ; Lyapunov methods ; optimization and optimal control ; Payloads ; Predictive control ; Robot control ; Robot dynamics ; Robots ; robust/adaptive control ; Stability criteria ; Task complexity ; Trajectory optimization ; Uncertainty ; Unknown environments</subject><ispartof>IEEE robotics and automation letters, 2022-01, Vol.7 (1), p.565-572</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2022</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3</citedby><cites>FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3</cites><orcidid>0000-0001-7272-0937 ; 0000-0002-4285-4990 ; 0000-0001-8269-6272 ; 0000-0002-8971-6843</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9618829$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Minniti, Maria Vittoria</creatorcontrib><creatorcontrib>Grandia, Ruben</creatorcontrib><creatorcontrib>Farshidian, Farbod</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><title>Adaptive CLF-MPC With Application to Quadrupedal Robots</title><title>IEEE robotics and automation letters</title><addtitle>LRA</addtitle><description>Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used in disaster scenarios to remove dangerous material or carry injured people. It is thus essential to develop planning algorithms that can enable complex robots to perform motion and manipulation tasks accurately. In addition, online adaptation mechanisms with respect to new, unknown environments are needed. In this work, we impose that the optimal state-input trajectories generated by Model Predictive Control (MPC) satisfy the Lyapunov function criterion derived in adaptive control for robotic systems. As a result, we combine the stability guarantees provided by Control Lyapunov Functions (CLFs) and the optimality offered by MPC in a unified adaptive framework, yielding an improved performance during the robot's interaction with unknown objects. We validate the proposed approach in simulation and hardware tests on a quadrupedal robot carrying un-modeled payloads and pulling heavy boxes.</description><subject>Adaptation models</subject><subject>Adaptive control</subject><subject>Algorithms</subject><subject>Control stability</subject><subject>Legged robots</subject><subject>Liapunov functions</subject><subject>Lyapunov methods</subject><subject>optimization and optimal control</subject><subject>Payloads</subject><subject>Predictive control</subject><subject>Robot control</subject><subject>Robot dynamics</subject><subject>Robots</subject><subject>robust/adaptive control</subject><subject>Stability criteria</subject><subject>Task complexity</subject><subject>Trajectory optimization</subject><subject>Uncertainty</subject><subject>Unknown environments</subject><issn>2377-3766</issn><issn>2377-3766</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><recordid>eNpNkM9LwzAUx4MoOObugpeC59aXZGmSYylOhYo6FI8haVPsqEtNUsH_3o4O8fTe431_wAehSwwZxiBvqm2RESA4o5iIXPITtCCU85TyPD_9t5-jVQg7AMCMcCrZAvGi0UPsvm1SVpv08blM3rv4kRTD0He1jp3bJ9ElL6Nu_DjYRvfJ1hkXwwU6a3Uf7Oo4l-htc_ta3qfV091DWVRpTSSOaS4NlUKAlI2xgjFhJBCzloy2ApggmhNgVNftdFg2PY02vAVBbVOvjbV0ia7n3MG7r9GGqHZu9PupUpEcuOCMTwFLBLOq9i4Eb1s1-O5T-x-FQR0IqYmQOhBSR0KT5Wq2dNbaP7nMsRBE0l8_7F8z</recordid><startdate>202201</startdate><enddate>202201</enddate><creator>Minniti, Maria Vittoria</creator><creator>Grandia, Ruben</creator><creator>Farshidian, Farbod</creator><creator>Hutter, Marco</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><orcidid>https://orcid.org/0000-0001-7272-0937</orcidid><orcidid>https://orcid.org/0000-0002-4285-4990</orcidid><orcidid>https://orcid.org/0000-0001-8269-6272</orcidid><orcidid>https://orcid.org/0000-0002-8971-6843</orcidid></search><sort><creationdate>202201</creationdate><title>Adaptive CLF-MPC With Application to Quadrupedal Robots</title><author>Minniti, Maria Vittoria ; Grandia, Ruben ; Farshidian, Farbod ; Hutter, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Adaptation models</topic><topic>Adaptive control</topic><topic>Algorithms</topic><topic>Control stability</topic><topic>Legged robots</topic><topic>Liapunov functions</topic><topic>Lyapunov methods</topic><topic>optimization and optimal control</topic><topic>Payloads</topic><topic>Predictive control</topic><topic>Robot control</topic><topic>Robot dynamics</topic><topic>Robots</topic><topic>robust/adaptive control</topic><topic>Stability criteria</topic><topic>Task complexity</topic><topic>Trajectory optimization</topic><topic>Uncertainty</topic><topic>Unknown environments</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Minniti, Maria Vittoria</creatorcontrib><creatorcontrib>Grandia, Ruben</creatorcontrib><creatorcontrib>Farshidian, Farbod</creatorcontrib><creatorcontrib>Hutter, Marco</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library (IEL)</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>IEEE robotics and automation letters</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Minniti, Maria Vittoria</au><au>Grandia, Ruben</au><au>Farshidian, Farbod</au><au>Hutter, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Adaptive CLF-MPC With Application to Quadrupedal Robots</atitle><jtitle>IEEE robotics and automation letters</jtitle><stitle>LRA</stitle><date>2022-01</date><risdate>2022</risdate><volume>7</volume><issue>1</issue><spage>565</spage><epage>572</epage><pages>565-572</pages><issn>2377-3766</issn><eissn>2377-3766</eissn><coden>IRALC6</coden><abstract>Modern robotic systems are endowed with superior mobility and mechanical skills that make them suited to be employed in real-world scenarios, where interactions with heavy objects and precise manipulation capabilities are required. For instance, legged robots with high payload capacity can be used in disaster scenarios to remove dangerous material or carry injured people. It is thus essential to develop planning algorithms that can enable complex robots to perform motion and manipulation tasks accurately. In addition, online adaptation mechanisms with respect to new, unknown environments are needed. In this work, we impose that the optimal state-input trajectories generated by Model Predictive Control (MPC) satisfy the Lyapunov function criterion derived in adaptive control for robotic systems. As a result, we combine the stability guarantees provided by Control Lyapunov Functions (CLFs) and the optimality offered by MPC in a unified adaptive framework, yielding an improved performance during the robot's interaction with unknown objects. We validate the proposed approach in simulation and hardware tests on a quadrupedal robot carrying un-modeled payloads and pulling heavy boxes.</abstract><cop>Piscataway</cop><pub>IEEE</pub><doi>10.1109/LRA.2021.3128697</doi><tpages>8</tpages><orcidid>https://orcid.org/0000-0001-7272-0937</orcidid><orcidid>https://orcid.org/0000-0002-4285-4990</orcidid><orcidid>https://orcid.org/0000-0001-8269-6272</orcidid><orcidid>https://orcid.org/0000-0002-8971-6843</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 2377-3766
ispartof IEEE robotics and automation letters, 2022-01, Vol.7 (1), p.565-572
issn 2377-3766
2377-3766
language eng
recordid cdi_ieee_primary_9618829
source IEEE Electronic Library (IEL) Journals
subjects Adaptation models
Adaptive control
Algorithms
Control stability
Legged robots
Liapunov functions
Lyapunov methods
optimization and optimal control
Payloads
Predictive control
Robot control
Robot dynamics
Robots
robust/adaptive control
Stability criteria
Task complexity
Trajectory optimization
Uncertainty
Unknown environments
title Adaptive CLF-MPC With Application to Quadrupedal Robots
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T01%3A59%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_ieee_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Adaptive%20CLF-MPC%20With%20Application%20to%20Quadrupedal%20Robots&rft.jtitle=IEEE%20robotics%20and%20automation%20letters&rft.au=Minniti,%20Maria%20Vittoria&rft.date=2022-01&rft.volume=7&rft.issue=1&rft.spage=565&rft.epage=572&rft.pages=565-572&rft.issn=2377-3766&rft.eissn=2377-3766&rft.coden=IRALC6&rft_id=info:doi/10.1109/LRA.2021.3128697&rft_dat=%3Cproquest_ieee_%3E2607875705%3C/proquest_ieee_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-69b3988099dbe8558b902b4953f80582a72053acf058e5b90bab7f083edc4bee3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2607875705&rft_id=info:pmid/&rft_ieee_id=9618829&rfr_iscdi=true