Loading…

Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks

Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic...

Full description

Saved in:
Bibliographic Details
Main Authors: Ueter, Niklas, Gunzel, Mario, Chen, Jian-Jia
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 392
container_issue
container_start_page 380
container_title
container_volume
creator Ueter, Niklas
Gunzel, Mario
Chen, Jian-Jia
description Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic graphs (DAGs) are prominent models to express parallelism and precedence constraints. In classic real-time systems, all tasks have to comply with strict timing constraints, which however result in resource underutilization due to pessimistic assumptions. Applications in CPS that have traditionally been considered as hard real-time such as control algorithms have demonstrated inherent robustness that can tolerate occasional deadline misses. In this paper, we propose a hierarchical scheduling algorithm and probabilistic response-time analyses for probabilistic conditional DAG tasks that allow to guarantee a bounded probability for k consecutive deadline misses without enforcing late jobs to be immediately aborted.
doi_str_mv 10.1109/RTSS52674.2021.00042
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9622370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9622370</ieee_id><sourcerecordid>9622370</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1642-4b326134656183b079b55d2017077e76f97b43dc36574f59f7b9c409bb538a0c3</originalsourceid><addsrcrecordid>eNotzNFKwzAUgOGACo65J9CLvEDryUly0lyOqZsw2NgqeDeSNoVg1o6mN_PpRfTqv_jgZ-xJQCkE2OdDfTxqJKNKBBQlACi8YQtrKkGkFVaAdMtmqA0VUhi8Z4ucowdVkYIK7Yx9HkK-DH0ORR3PgS97l645Zu76lu8uUzzHbzfFoefdMPL9OHjnY4p5ig1fDX0bf80lvnejSykk_rJc89rlr_zA7jqXclj8d84-3l7r1abY7tbvq-W2iIIUFspLJCEVaRKV9GCs17pFEAaMCYY6a7ySbSNJG9Vp2xlvGwXWey0rB42cs8e_bwwhnC5jPLvxerKEKA3IH6N8UkA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks</title><source>IEEE Xplore All Conference Series</source><creator>Ueter, Niklas ; Gunzel, Mario ; Chen, Jian-Jia</creator><creatorcontrib>Ueter, Niklas ; Gunzel, Mario ; Chen, Jian-Jia</creatorcontrib><description>Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic graphs (DAGs) are prominent models to express parallelism and precedence constraints. In classic real-time systems, all tasks have to comply with strict timing constraints, which however result in resource underutilization due to pessimistic assumptions. Applications in CPS that have traditionally been considered as hard real-time such as control algorithms have demonstrated inherent robustness that can tolerate occasional deadline misses. In this paper, we propose a hierarchical scheduling algorithm and probabilistic response-time analyses for probabilistic conditional DAG tasks that allow to guarantee a bounded probability for k consecutive deadline misses without enforcing late jobs to be immediately aborted.</description><identifier>ISSN: 2576-3172</identifier><identifier>ISBN: 9781665428026</identifier><identifier>ISBN: 1665428023</identifier><identifier>DOI: 10.1109/RTSS52674.2021.00042</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Multicore processing ; Parallel processing ; Probabilistic logic ; Program processors ; Real-time systems ; Scheduling algorithms</subject><ispartof>2021 IEEE Real-Time Systems Symposium (RTSS), 2021, p.380-392</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9622370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9622370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ueter, Niklas</creatorcontrib><creatorcontrib>Gunzel, Mario</creatorcontrib><creatorcontrib>Chen, Jian-Jia</creatorcontrib><title>Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks</title><title>2021 IEEE Real-Time Systems Symposium (RTSS)</title><addtitle>RTSS</addtitle><description>Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic graphs (DAGs) are prominent models to express parallelism and precedence constraints. In classic real-time systems, all tasks have to comply with strict timing constraints, which however result in resource underutilization due to pessimistic assumptions. Applications in CPS that have traditionally been considered as hard real-time such as control algorithms have demonstrated inherent robustness that can tolerate occasional deadline misses. In this paper, we propose a hierarchical scheduling algorithm and probabilistic response-time analyses for probabilistic conditional DAG tasks that allow to guarantee a bounded probability for k consecutive deadline misses without enforcing late jobs to be immediately aborted.</description><subject>Computational modeling</subject><subject>Multicore processing</subject><subject>Parallel processing</subject><subject>Probabilistic logic</subject><subject>Program processors</subject><subject>Real-time systems</subject><subject>Scheduling algorithms</subject><issn>2576-3172</issn><isbn>9781665428026</isbn><isbn>1665428023</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzNFKwzAUgOGACo65J9CLvEDryUly0lyOqZsw2NgqeDeSNoVg1o6mN_PpRfTqv_jgZ-xJQCkE2OdDfTxqJKNKBBQlACi8YQtrKkGkFVaAdMtmqA0VUhi8Z4ucowdVkYIK7Yx9HkK-DH0ORR3PgS97l645Zu76lu8uUzzHbzfFoefdMPL9OHjnY4p5ig1fDX0bf80lvnejSykk_rJc89rlr_zA7jqXclj8d84-3l7r1abY7tbvq-W2iIIUFspLJCEVaRKV9GCs17pFEAaMCYY6a7ySbSNJG9Vp2xlvGwXWey0rB42cs8e_bwwhnC5jPLvxerKEKA3IH6N8UkA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ueter, Niklas</creator><creator>Gunzel, Mario</creator><creator>Chen, Jian-Jia</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2021</creationdate><title>Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks</title><author>Ueter, Niklas ; Gunzel, Mario ; Chen, Jian-Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1642-4b326134656183b079b55d2017077e76f97b43dc36574f59f7b9c409bb538a0c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational modeling</topic><topic>Multicore processing</topic><topic>Parallel processing</topic><topic>Probabilistic logic</topic><topic>Program processors</topic><topic>Real-time systems</topic><topic>Scheduling algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ueter, Niklas</creatorcontrib><creatorcontrib>Gunzel, Mario</creatorcontrib><creatorcontrib>Chen, Jian-Jia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ueter, Niklas</au><au>Gunzel, Mario</au><au>Chen, Jian-Jia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks</atitle><btitle>2021 IEEE Real-Time Systems Symposium (RTSS)</btitle><stitle>RTSS</stitle><date>2021</date><risdate>2021</risdate><spage>380</spage><epage>392</epage><pages>380-392</pages><issn>2576-3172</issn><isbn>9781665428026</isbn><isbn>1665428023</isbn><coden>IEEPAD</coden><abstract>Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic graphs (DAGs) are prominent models to express parallelism and precedence constraints. In classic real-time systems, all tasks have to comply with strict timing constraints, which however result in resource underutilization due to pessimistic assumptions. Applications in CPS that have traditionally been considered as hard real-time such as control algorithms have demonstrated inherent robustness that can tolerate occasional deadline misses. In this paper, we propose a hierarchical scheduling algorithm and probabilistic response-time analyses for probabilistic conditional DAG tasks that allow to guarantee a bounded probability for k consecutive deadline misses without enforcing late jobs to be immediately aborted.</abstract><pub>IEEE</pub><doi>10.1109/RTSS52674.2021.00042</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 2576-3172
ispartof 2021 IEEE Real-Time Systems Symposium (RTSS), 2021, p.380-392
issn 2576-3172
language eng
recordid cdi_ieee_primary_9622370
source IEEE Xplore All Conference Series
subjects Computational modeling
Multicore processing
Parallel processing
Probabilistic logic
Program processors
Real-time systems
Scheduling algorithms
title Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Response-Time%20Analysis%20and%20Optimization%20for%20Probabilistic%20Conditional%20Parallel%20DAG%20Tasks&rft.btitle=2021%20IEEE%20Real-Time%20Systems%20Symposium%20(RTSS)&rft.au=Ueter,%20Niklas&rft.date=2021&rft.spage=380&rft.epage=392&rft.pages=380-392&rft.issn=2576-3172&rft.isbn=9781665428026&rft.isbn_list=1665428023&rft.coden=IEEPAD&rft_id=info:doi/10.1109/RTSS52674.2021.00042&rft_dat=%3Cieee_CHZPO%3E9622370%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1642-4b326134656183b079b55d2017077e76f97b43dc36574f59f7b9c409bb538a0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9622370&rfr_iscdi=true