Loading…
Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks
Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic...
Saved in:
Main Authors: | , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 392 |
container_issue | |
container_start_page | 380 |
container_title | |
container_volume | |
creator | Ueter, Niklas Gunzel, Mario Chen, Jian-Jia |
description | Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic graphs (DAGs) are prominent models to express parallelism and precedence constraints. In classic real-time systems, all tasks have to comply with strict timing constraints, which however result in resource underutilization due to pessimistic assumptions. Applications in CPS that have traditionally been considered as hard real-time such as control algorithms have demonstrated inherent robustness that can tolerate occasional deadline misses. In this paper, we propose a hierarchical scheduling algorithm and probabilistic response-time analyses for probabilistic conditional DAG tasks that allow to guarantee a bounded probability for k consecutive deadline misses without enforcing late jobs to be immediately aborted. |
doi_str_mv | 10.1109/RTSS52674.2021.00042 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9622370</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9622370</ieee_id><sourcerecordid>9622370</sourcerecordid><originalsourceid>FETCH-LOGICAL-i1642-4b326134656183b079b55d2017077e76f97b43dc36574f59f7b9c409bb538a0c3</originalsourceid><addsrcrecordid>eNotzNFKwzAUgOGACo65J9CLvEDryUly0lyOqZsw2NgqeDeSNoVg1o6mN_PpRfTqv_jgZ-xJQCkE2OdDfTxqJKNKBBQlACi8YQtrKkGkFVaAdMtmqA0VUhi8Z4ucowdVkYIK7Yx9HkK-DH0ORR3PgS97l645Zu76lu8uUzzHbzfFoefdMPL9OHjnY4p5ig1fDX0bf80lvnejSykk_rJc89rlr_zA7jqXclj8d84-3l7r1abY7tbvq-W2iIIUFspLJCEVaRKV9GCs17pFEAaMCYY6a7ySbSNJG9Vp2xlvGwXWey0rB42cs8e_bwwhnC5jPLvxerKEKA3IH6N8UkA</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks</title><source>IEEE Xplore All Conference Series</source><creator>Ueter, Niklas ; Gunzel, Mario ; Chen, Jian-Jia</creator><creatorcontrib>Ueter, Niklas ; Gunzel, Mario ; Chen, Jian-Jia</creatorcontrib><description>Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic graphs (DAGs) are prominent models to express parallelism and precedence constraints. In classic real-time systems, all tasks have to comply with strict timing constraints, which however result in resource underutilization due to pessimistic assumptions. Applications in CPS that have traditionally been considered as hard real-time such as control algorithms have demonstrated inherent robustness that can tolerate occasional deadline misses. In this paper, we propose a hierarchical scheduling algorithm and probabilistic response-time analyses for probabilistic conditional DAG tasks that allow to guarantee a bounded probability for k consecutive deadline misses without enforcing late jobs to be immediately aborted.</description><identifier>ISSN: 2576-3172</identifier><identifier>ISBN: 9781665428026</identifier><identifier>ISBN: 1665428023</identifier><identifier>DOI: 10.1109/RTSS52674.2021.00042</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>IEEE</publisher><subject>Computational modeling ; Multicore processing ; Parallel processing ; Probabilistic logic ; Program processors ; Real-time systems ; Scheduling algorithms</subject><ispartof>2021 IEEE Real-Time Systems Symposium (RTSS), 2021, p.380-392</ispartof><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9622370$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,4050,4051,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9622370$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>Ueter, Niklas</creatorcontrib><creatorcontrib>Gunzel, Mario</creatorcontrib><creatorcontrib>Chen, Jian-Jia</creatorcontrib><title>Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks</title><title>2021 IEEE Real-Time Systems Symposium (RTSS)</title><addtitle>RTSS</addtitle><description>Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic graphs (DAGs) are prominent models to express parallelism and precedence constraints. In classic real-time systems, all tasks have to comply with strict timing constraints, which however result in resource underutilization due to pessimistic assumptions. Applications in CPS that have traditionally been considered as hard real-time such as control algorithms have demonstrated inherent robustness that can tolerate occasional deadline misses. In this paper, we propose a hierarchical scheduling algorithm and probabilistic response-time analyses for probabilistic conditional DAG tasks that allow to guarantee a bounded probability for k consecutive deadline misses without enforcing late jobs to be immediately aborted.</description><subject>Computational modeling</subject><subject>Multicore processing</subject><subject>Parallel processing</subject><subject>Probabilistic logic</subject><subject>Program processors</subject><subject>Real-time systems</subject><subject>Scheduling algorithms</subject><issn>2576-3172</issn><isbn>9781665428026</isbn><isbn>1665428023</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNotzNFKwzAUgOGACo65J9CLvEDryUly0lyOqZsw2NgqeDeSNoVg1o6mN_PpRfTqv_jgZ-xJQCkE2OdDfTxqJKNKBBQlACi8YQtrKkGkFVaAdMtmqA0VUhi8Z4ucowdVkYIK7Yx9HkK-DH0ORR3PgS97l645Zu76lu8uUzzHbzfFoefdMPL9OHjnY4p5ig1fDX0bf80lvnejSykk_rJc89rlr_zA7jqXclj8d84-3l7r1abY7tbvq-W2iIIUFspLJCEVaRKV9GCs17pFEAaMCYY6a7ySbSNJG9Vp2xlvGwXWey0rB42cs8e_bwwhnC5jPLvxerKEKA3IH6N8UkA</recordid><startdate>2021</startdate><enddate>2021</enddate><creator>Ueter, Niklas</creator><creator>Gunzel, Mario</creator><creator>Chen, Jian-Jia</creator><general>IEEE</general><scope>6IE</scope><scope>6IH</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIO</scope></search><sort><creationdate>2021</creationdate><title>Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks</title><author>Ueter, Niklas ; Gunzel, Mario ; Chen, Jian-Jia</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i1642-4b326134656183b079b55d2017077e76f97b43dc36574f59f7b9c409bb538a0c3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Computational modeling</topic><topic>Multicore processing</topic><topic>Parallel processing</topic><topic>Probabilistic logic</topic><topic>Program processors</topic><topic>Real-time systems</topic><topic>Scheduling algorithms</topic><toplevel>online_resources</toplevel><creatorcontrib>Ueter, Niklas</creatorcontrib><creatorcontrib>Gunzel, Mario</creatorcontrib><creatorcontrib>Chen, Jian-Jia</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan (POP) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Electronic Library (IEL)</collection><collection>IEEE Proceedings Order Plans (POP) 1998-present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Ueter, Niklas</au><au>Gunzel, Mario</au><au>Chen, Jian-Jia</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks</atitle><btitle>2021 IEEE Real-Time Systems Symposium (RTSS)</btitle><stitle>RTSS</stitle><date>2021</date><risdate>2021</risdate><spage>380</spage><epage>392</epage><pages>380-392</pages><issn>2576-3172</issn><isbn>9781665428026</isbn><isbn>1665428023</isbn><coden>IEEPAD</coden><abstract>Cyber-physical systems (CPS) increasingly use multicore processors in order to satisfy power and computational requirements. To exploit the architectural parallelism offered by the multicore processors, parallel task models and appropriate scheduling algorithms have to be provided. Directed-acyclic graphs (DAGs) are prominent models to express parallelism and precedence constraints. In classic real-time systems, all tasks have to comply with strict timing constraints, which however result in resource underutilization due to pessimistic assumptions. Applications in CPS that have traditionally been considered as hard real-time such as control algorithms have demonstrated inherent robustness that can tolerate occasional deadline misses. In this paper, we propose a hierarchical scheduling algorithm and probabilistic response-time analyses for probabilistic conditional DAG tasks that allow to guarantee a bounded probability for k consecutive deadline misses without enforcing late jobs to be immediately aborted.</abstract><pub>IEEE</pub><doi>10.1109/RTSS52674.2021.00042</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 2576-3172 |
ispartof | 2021 IEEE Real-Time Systems Symposium (RTSS), 2021, p.380-392 |
issn | 2576-3172 |
language | eng |
recordid | cdi_ieee_primary_9622370 |
source | IEEE Xplore All Conference Series |
subjects | Computational modeling Multicore processing Parallel processing Probabilistic logic Program processors Real-time systems Scheduling algorithms |
title | Response-Time Analysis and Optimization for Probabilistic Conditional Parallel DAG Tasks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T22%3A59%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Response-Time%20Analysis%20and%20Optimization%20for%20Probabilistic%20Conditional%20Parallel%20DAG%20Tasks&rft.btitle=2021%20IEEE%20Real-Time%20Systems%20Symposium%20(RTSS)&rft.au=Ueter,%20Niklas&rft.date=2021&rft.spage=380&rft.epage=392&rft.pages=380-392&rft.issn=2576-3172&rft.isbn=9781665428026&rft.isbn_list=1665428023&rft.coden=IEEPAD&rft_id=info:doi/10.1109/RTSS52674.2021.00042&rft_dat=%3Cieee_CHZPO%3E9622370%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i1642-4b326134656183b079b55d2017077e76f97b43dc36574f59f7b9c409bb538a0c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9622370&rfr_iscdi=true |