Loading…
Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks
In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of...
Saved in:
Main Authors: | , , , |
---|---|
Format: | Conference Proceeding |
Language: | English |
Subjects: | |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | |
container_end_page | 4 |
container_issue | |
container_start_page | 1 |
container_title | |
container_volume | |
creator | N, Sindhura D Pai, Radhika M Bhat, Shyamasunder N M, Manohara Pai M |
description | In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of diseases. The Generative Adversarial Networks (GANs), is a method of data augmentation which can be used to generate synthetic realistic looking images, however low quality images are generated. For AI models, it is challenging tasks to do classification using this low quality images. In this work, generation of high quality synthetic medical image using Deep Convolutional Generative Adversarial Networks (DCGANs) is presented. Data augmentation method by DCGANs is illustrated on the limited dataset of CT (Computed Tomography) images of vertebral column fracture. A total of 340 CT scan images were taken for the study, which comprises of complete burst fracture scans of vertebral column. The evaluation of the generated images was done with Visual Turing Test. |
doi_str_mv | 10.1109/CONECCT52877.2021.9622527 |
format | conference_proceeding |
fullrecord | <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9622527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9622527</ieee_id><sourcerecordid>9622527</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-8eab342b140e5066d374954140d76cf1960e47f50dc0bfb2ce39d269a18abc6a3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURA0SElXpF7AxH5BiXzt-LKvQl1S1Cwrbyk5uaCBNK8ctyt8TQVmNZuZoFkPIE2djzpl9zjbraZZtUzBaj4EBH1sFkIK-ISOrDVcqlWCk5bdkAFqpBDjj92TUtp-MMQFMWAMDsn_tmrjHWOX0HUNEH1xNs2N9PjR0FlwezwHp8uA-kM6xweBidWyo7-gL4qkHm0vP_mb_9QXppLhgaF2o-q01xu9j-GofyF3p6hZHVx2St9l0my2S1Wa-zCarpOLcxMSg80KC55JhypQqhJY2lb0ttMpLbhVDqcuUFTnzpYcchS1AWceN87lyYkge_3YrRNydQnVwodtdvxE_4QhbOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks</title><source>IEEE Xplore All Conference Series</source><creator>N, Sindhura D ; Pai, Radhika M ; Bhat, Shyamasunder N ; M, Manohara Pai M</creator><creatorcontrib>N, Sindhura D ; Pai, Radhika M ; Bhat, Shyamasunder N ; M, Manohara Pai M</creatorcontrib><description>In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of diseases. The Generative Adversarial Networks (GANs), is a method of data augmentation which can be used to generate synthetic realistic looking images, however low quality images are generated. For AI models, it is challenging tasks to do classification using this low quality images. In this work, generation of high quality synthetic medical image using Deep Convolutional Generative Adversarial Networks (DCGANs) is presented. Data augmentation method by DCGANs is illustrated on the limited dataset of CT (Computed Tomography) images of vertebral column fracture. A total of 340 CT scan images were taken for the study, which comprises of complete burst fracture scans of vertebral column. The evaluation of the generated images was done with Visual Turing Test.</description><identifier>EISSN: 2766-2101</identifier><identifier>EISBN: 9781665428491</identifier><identifier>EISBN: 166542849X</identifier><identifier>DOI: 10.1109/CONECCT52877.2021.9622527</identifier><language>eng</language><publisher>IEEE</publisher><subject>AI models ; Computational modeling ; Computed tomography ; data augmentation ; Deep Convolutional Generative Adversarial Network ; Generative adversarial networks ; Image synthesis ; Medical services ; Training data ; vertebral column fracture ; Visual Turing Test ; Visualization</subject><ispartof>2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2021, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9358-9165 ; 0000-0002-0916-0495 ; 0000-0003-2164-2945 ; 0000-0001-9545-4838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9622527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9622527$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>N, Sindhura D</creatorcontrib><creatorcontrib>Pai, Radhika M</creatorcontrib><creatorcontrib>Bhat, Shyamasunder N</creatorcontrib><creatorcontrib>M, Manohara Pai M</creatorcontrib><title>Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks</title><title>2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)</title><addtitle>CONECCT</addtitle><description>In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of diseases. The Generative Adversarial Networks (GANs), is a method of data augmentation which can be used to generate synthetic realistic looking images, however low quality images are generated. For AI models, it is challenging tasks to do classification using this low quality images. In this work, generation of high quality synthetic medical image using Deep Convolutional Generative Adversarial Networks (DCGANs) is presented. Data augmentation method by DCGANs is illustrated on the limited dataset of CT (Computed Tomography) images of vertebral column fracture. A total of 340 CT scan images were taken for the study, which comprises of complete burst fracture scans of vertebral column. The evaluation of the generated images was done with Visual Turing Test.</description><subject>AI models</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>data augmentation</subject><subject>Deep Convolutional Generative Adversarial Network</subject><subject>Generative adversarial networks</subject><subject>Image synthesis</subject><subject>Medical services</subject><subject>Training data</subject><subject>vertebral column fracture</subject><subject>Visual Turing Test</subject><subject>Visualization</subject><issn>2766-2101</issn><isbn>9781665428491</isbn><isbn>166542849X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwzAURA0SElXpF7AxH5BiXzt-LKvQl1S1Cwrbyk5uaCBNK8ctyt8TQVmNZuZoFkPIE2djzpl9zjbraZZtUzBaj4EBH1sFkIK-ISOrDVcqlWCk5bdkAFqpBDjj92TUtp-MMQFMWAMDsn_tmrjHWOX0HUNEH1xNs2N9PjR0FlwezwHp8uA-kM6xweBidWyo7-gL4qkHm0vP_mb_9QXppLhgaF2o-q01xu9j-GofyF3p6hZHVx2St9l0my2S1Wa-zCarpOLcxMSg80KC55JhypQqhJY2lb0ttMpLbhVDqcuUFTnzpYcchS1AWceN87lyYkge_3YrRNydQnVwodtdvxE_4QhbOQ</recordid><startdate>20210709</startdate><enddate>20210709</enddate><creator>N, Sindhura D</creator><creator>Pai, Radhika M</creator><creator>Bhat, Shyamasunder N</creator><creator>M, Manohara Pai M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><orcidid>https://orcid.org/0000-0001-9358-9165</orcidid><orcidid>https://orcid.org/0000-0002-0916-0495</orcidid><orcidid>https://orcid.org/0000-0003-2164-2945</orcidid><orcidid>https://orcid.org/0000-0001-9545-4838</orcidid></search><sort><creationdate>20210709</creationdate><title>Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks</title><author>N, Sindhura D ; Pai, Radhika M ; Bhat, Shyamasunder N ; M, Manohara Pai M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-8eab342b140e5066d374954140d76cf1960e47f50dc0bfb2ce39d269a18abc6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AI models</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>data augmentation</topic><topic>Deep Convolutional Generative Adversarial Network</topic><topic>Generative adversarial networks</topic><topic>Image synthesis</topic><topic>Medical services</topic><topic>Training data</topic><topic>vertebral column fracture</topic><topic>Visual Turing Test</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>N, Sindhura D</creatorcontrib><creatorcontrib>Pai, Radhika M</creatorcontrib><creatorcontrib>Bhat, Shyamasunder N</creatorcontrib><creatorcontrib>M, Manohara Pai M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>N, Sindhura D</au><au>Pai, Radhika M</au><au>Bhat, Shyamasunder N</au><au>M, Manohara Pai M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks</atitle><btitle>2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)</btitle><stitle>CONECCT</stitle><date>2021-07-09</date><risdate>2021</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2766-2101</eissn><eisbn>9781665428491</eisbn><eisbn>166542849X</eisbn><abstract>In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of diseases. The Generative Adversarial Networks (GANs), is a method of data augmentation which can be used to generate synthetic realistic looking images, however low quality images are generated. For AI models, it is challenging tasks to do classification using this low quality images. In this work, generation of high quality synthetic medical image using Deep Convolutional Generative Adversarial Networks (DCGANs) is presented. Data augmentation method by DCGANs is illustrated on the limited dataset of CT (Computed Tomography) images of vertebral column fracture. A total of 340 CT scan images were taken for the study, which comprises of complete burst fracture scans of vertebral column. The evaluation of the generated images was done with Visual Turing Test.</abstract><pub>IEEE</pub><doi>10.1109/CONECCT52877.2021.9622527</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9358-9165</orcidid><orcidid>https://orcid.org/0000-0002-0916-0495</orcidid><orcidid>https://orcid.org/0000-0003-2164-2945</orcidid><orcidid>https://orcid.org/0000-0001-9545-4838</orcidid></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | EISSN: 2766-2101 |
ispartof | 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2021, p.1-4 |
issn | 2766-2101 |
language | eng |
recordid | cdi_ieee_primary_9622527 |
source | IEEE Xplore All Conference Series |
subjects | AI models Computational modeling Computed tomography data augmentation Deep Convolutional Generative Adversarial Network Generative adversarial networks Image synthesis Medical services Training data vertebral column fracture Visual Turing Test Visualization |
title | Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Synthetic%20Vertebral%20Column%20Fracture%20Image%20Generation%20by%20Deep%20Convolution%20Generative%20Adversarial%20Networks&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Electronics,%20Computing%20and%20Communication%20Technologies%20(CONECCT)&rft.au=N,%20Sindhura%20D&rft.date=2021-07-09&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2766-2101&rft_id=info:doi/10.1109/CONECCT52877.2021.9622527&rft.eisbn=9781665428491&rft.eisbn_list=166542849X&rft_dat=%3Cieee_CHZPO%3E9622527%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-8eab342b140e5066d374954140d76cf1960e47f50dc0bfb2ce39d269a18abc6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9622527&rfr_iscdi=true |