Loading…

Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks

In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of...

Full description

Saved in:
Bibliographic Details
Main Authors: N, Sindhura D, Pai, Radhika M, Bhat, Shyamasunder N, M, Manohara Pai M
Format: Conference Proceeding
Language:English
Subjects:
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 4
container_issue
container_start_page 1
container_title
container_volume
creator N, Sindhura D
Pai, Radhika M
Bhat, Shyamasunder N
M, Manohara Pai M
description In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of diseases. The Generative Adversarial Networks (GANs), is a method of data augmentation which can be used to generate synthetic realistic looking images, however low quality images are generated. For AI models, it is challenging tasks to do classification using this low quality images. In this work, generation of high quality synthetic medical image using Deep Convolutional Generative Adversarial Networks (DCGANs) is presented. Data augmentation method by DCGANs is illustrated on the limited dataset of CT (Computed Tomography) images of vertebral column fracture. A total of 340 CT scan images were taken for the study, which comprises of complete burst fracture scans of vertebral column. The evaluation of the generated images was done with Visual Turing Test.
doi_str_mv 10.1109/CONECCT52877.2021.9622527
format conference_proceeding
fullrecord <record><control><sourceid>ieee_CHZPO</sourceid><recordid>TN_cdi_ieee_primary_9622527</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>9622527</ieee_id><sourcerecordid>9622527</sourcerecordid><originalsourceid>FETCH-LOGICAL-i118t-8eab342b140e5066d374954140d76cf1960e47f50dc0bfb2ce39d269a18abc6a3</originalsourceid><addsrcrecordid>eNo1kMtOwzAURA0SElXpF7AxH5BiXzt-LKvQl1S1Cwrbyk5uaCBNK8ctyt8TQVmNZuZoFkPIE2djzpl9zjbraZZtUzBaj4EBH1sFkIK-ISOrDVcqlWCk5bdkAFqpBDjj92TUtp-MMQFMWAMDsn_tmrjHWOX0HUNEH1xNs2N9PjR0FlwezwHp8uA-kM6xweBidWyo7-gL4qkHm0vP_mb_9QXppLhgaF2o-q01xu9j-GofyF3p6hZHVx2St9l0my2S1Wa-zCarpOLcxMSg80KC55JhypQqhJY2lb0ttMpLbhVDqcuUFTnzpYcchS1AWceN87lyYkge_3YrRNydQnVwodtdvxE_4QhbOQ</addsrcrecordid><sourcetype>Publisher</sourcetype><iscdi>true</iscdi><recordtype>conference_proceeding</recordtype></control><display><type>conference_proceeding</type><title>Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks</title><source>IEEE Xplore All Conference Series</source><creator>N, Sindhura D ; Pai, Radhika M ; Bhat, Shyamasunder N ; M, Manohara Pai M</creator><creatorcontrib>N, Sindhura D ; Pai, Radhika M ; Bhat, Shyamasunder N ; M, Manohara Pai M</creatorcontrib><description>In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of diseases. The Generative Adversarial Networks (GANs), is a method of data augmentation which can be used to generate synthetic realistic looking images, however low quality images are generated. For AI models, it is challenging tasks to do classification using this low quality images. In this work, generation of high quality synthetic medical image using Deep Convolutional Generative Adversarial Networks (DCGANs) is presented. Data augmentation method by DCGANs is illustrated on the limited dataset of CT (Computed Tomography) images of vertebral column fracture. A total of 340 CT scan images were taken for the study, which comprises of complete burst fracture scans of vertebral column. The evaluation of the generated images was done with Visual Turing Test.</description><identifier>EISSN: 2766-2101</identifier><identifier>EISBN: 9781665428491</identifier><identifier>EISBN: 166542849X</identifier><identifier>DOI: 10.1109/CONECCT52877.2021.9622527</identifier><language>eng</language><publisher>IEEE</publisher><subject>AI models ; Computational modeling ; Computed tomography ; data augmentation ; Deep Convolutional Generative Adversarial Network ; Generative adversarial networks ; Image synthesis ; Medical services ; Training data ; vertebral column fracture ; Visual Turing Test ; Visualization</subject><ispartof>2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2021, p.1-4</ispartof><woscitedreferencessubscribed>false</woscitedreferencessubscribed><orcidid>0000-0001-9358-9165 ; 0000-0002-0916-0495 ; 0000-0003-2164-2945 ; 0000-0001-9545-4838</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/9622527$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>309,310,780,784,789,790,27925,54555,54932</link.rule.ids><linktorsrc>$$Uhttps://ieeexplore.ieee.org/document/9622527$$EView_record_in_IEEE$$FView_record_in_$$GIEEE</linktorsrc></links><search><creatorcontrib>N, Sindhura D</creatorcontrib><creatorcontrib>Pai, Radhika M</creatorcontrib><creatorcontrib>Bhat, Shyamasunder N</creatorcontrib><creatorcontrib>M, Manohara Pai M</creatorcontrib><title>Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks</title><title>2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)</title><addtitle>CONECCT</addtitle><description>In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of diseases. The Generative Adversarial Networks (GANs), is a method of data augmentation which can be used to generate synthetic realistic looking images, however low quality images are generated. For AI models, it is challenging tasks to do classification using this low quality images. In this work, generation of high quality synthetic medical image using Deep Convolutional Generative Adversarial Networks (DCGANs) is presented. Data augmentation method by DCGANs is illustrated on the limited dataset of CT (Computed Tomography) images of vertebral column fracture. A total of 340 CT scan images were taken for the study, which comprises of complete burst fracture scans of vertebral column. The evaluation of the generated images was done with Visual Turing Test.</description><subject>AI models</subject><subject>Computational modeling</subject><subject>Computed tomography</subject><subject>data augmentation</subject><subject>Deep Convolutional Generative Adversarial Network</subject><subject>Generative adversarial networks</subject><subject>Image synthesis</subject><subject>Medical services</subject><subject>Training data</subject><subject>vertebral column fracture</subject><subject>Visual Turing Test</subject><subject>Visualization</subject><issn>2766-2101</issn><isbn>9781665428491</isbn><isbn>166542849X</isbn><fulltext>true</fulltext><rsrctype>conference_proceeding</rsrctype><creationdate>2021</creationdate><recordtype>conference_proceeding</recordtype><sourceid>6IE</sourceid><recordid>eNo1kMtOwzAURA0SElXpF7AxH5BiXzt-LKvQl1S1Cwrbyk5uaCBNK8ctyt8TQVmNZuZoFkPIE2djzpl9zjbraZZtUzBaj4EBH1sFkIK-ISOrDVcqlWCk5bdkAFqpBDjj92TUtp-MMQFMWAMDsn_tmrjHWOX0HUNEH1xNs2N9PjR0FlwezwHp8uA-kM6xweBidWyo7-gL4qkHm0vP_mb_9QXppLhgaF2o-q01xu9j-GofyF3p6hZHVx2St9l0my2S1Wa-zCarpOLcxMSg80KC55JhypQqhJY2lb0ttMpLbhVDqcuUFTnzpYcchS1AWceN87lyYkge_3YrRNydQnVwodtdvxE_4QhbOQ</recordid><startdate>20210709</startdate><enddate>20210709</enddate><creator>N, Sindhura D</creator><creator>Pai, Radhika M</creator><creator>Bhat, Shyamasunder N</creator><creator>M, Manohara Pai M</creator><general>IEEE</general><scope>6IE</scope><scope>6IL</scope><scope>CBEJK</scope><scope>RIE</scope><scope>RIL</scope><orcidid>https://orcid.org/0000-0001-9358-9165</orcidid><orcidid>https://orcid.org/0000-0002-0916-0495</orcidid><orcidid>https://orcid.org/0000-0003-2164-2945</orcidid><orcidid>https://orcid.org/0000-0001-9545-4838</orcidid></search><sort><creationdate>20210709</creationdate><title>Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks</title><author>N, Sindhura D ; Pai, Radhika M ; Bhat, Shyamasunder N ; M, Manohara Pai M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-i118t-8eab342b140e5066d374954140d76cf1960e47f50dc0bfb2ce39d269a18abc6a3</frbrgroupid><rsrctype>conference_proceedings</rsrctype><prefilter>conference_proceedings</prefilter><language>eng</language><creationdate>2021</creationdate><topic>AI models</topic><topic>Computational modeling</topic><topic>Computed tomography</topic><topic>data augmentation</topic><topic>Deep Convolutional Generative Adversarial Network</topic><topic>Generative adversarial networks</topic><topic>Image synthesis</topic><topic>Medical services</topic><topic>Training data</topic><topic>vertebral column fracture</topic><topic>Visual Turing Test</topic><topic>Visualization</topic><toplevel>online_resources</toplevel><creatorcontrib>N, Sindhura D</creatorcontrib><creatorcontrib>Pai, Radhika M</creatorcontrib><creatorcontrib>Bhat, Shyamasunder N</creatorcontrib><creatorcontrib>M, Manohara Pai M</creatorcontrib><collection>IEEE Electronic Library (IEL) Conference Proceedings</collection><collection>IEEE Proceedings Order Plan All Online (POP All Online) 1998-present by volume</collection><collection>IEEE Xplore All Conference Proceedings</collection><collection>IEEE Xplore</collection><collection>IEEE Proceedings Order Plans (POP All) 1998-Present</collection></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>N, Sindhura D</au><au>Pai, Radhika M</au><au>Bhat, Shyamasunder N</au><au>M, Manohara Pai M</au><format>book</format><genre>proceeding</genre><ristype>CONF</ristype><atitle>Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks</atitle><btitle>2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT)</btitle><stitle>CONECCT</stitle><date>2021-07-09</date><risdate>2021</risdate><spage>1</spage><epage>4</epage><pages>1-4</pages><eissn>2766-2101</eissn><eisbn>9781665428491</eisbn><eisbn>166542849X</eisbn><abstract>In the field of medical imaging, the challenging objective is to generate synthetic, realistic images which resembles the original images. The generated synthetic images would enhance the accuracy of the computer-assisted classification, Decision Support System, which aid the doctor in diagnosis of diseases. The Generative Adversarial Networks (GANs), is a method of data augmentation which can be used to generate synthetic realistic looking images, however low quality images are generated. For AI models, it is challenging tasks to do classification using this low quality images. In this work, generation of high quality synthetic medical image using Deep Convolutional Generative Adversarial Networks (DCGANs) is presented. Data augmentation method by DCGANs is illustrated on the limited dataset of CT (Computed Tomography) images of vertebral column fracture. A total of 340 CT scan images were taken for the study, which comprises of complete burst fracture scans of vertebral column. The evaluation of the generated images was done with Visual Turing Test.</abstract><pub>IEEE</pub><doi>10.1109/CONECCT52877.2021.9622527</doi><tpages>4</tpages><orcidid>https://orcid.org/0000-0001-9358-9165</orcidid><orcidid>https://orcid.org/0000-0002-0916-0495</orcidid><orcidid>https://orcid.org/0000-0003-2164-2945</orcidid><orcidid>https://orcid.org/0000-0001-9545-4838</orcidid></addata></record>
fulltext fulltext_linktorsrc
identifier EISSN: 2766-2101
ispartof 2021 IEEE International Conference on Electronics, Computing and Communication Technologies (CONECCT), 2021, p.1-4
issn 2766-2101
language eng
recordid cdi_ieee_primary_9622527
source IEEE Xplore All Conference Series
subjects AI models
Computational modeling
Computed tomography
data augmentation
Deep Convolutional Generative Adversarial Network
Generative adversarial networks
Image synthesis
Medical services
Training data
vertebral column fracture
Visual Turing Test
Visualization
title Synthetic Vertebral Column Fracture Image Generation by Deep Convolution Generative Adversarial Networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T01%3A48%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-ieee_CHZPO&rft_val_fmt=info:ofi/fmt:kev:mtx:book&rft.genre=proceeding&rft.atitle=Synthetic%20Vertebral%20Column%20Fracture%20Image%20Generation%20by%20Deep%20Convolution%20Generative%20Adversarial%20Networks&rft.btitle=2021%20IEEE%20International%20Conference%20on%20Electronics,%20Computing%20and%20Communication%20Technologies%20(CONECCT)&rft.au=N,%20Sindhura%20D&rft.date=2021-07-09&rft.spage=1&rft.epage=4&rft.pages=1-4&rft.eissn=2766-2101&rft_id=info:doi/10.1109/CONECCT52877.2021.9622527&rft.eisbn=9781665428491&rft.eisbn_list=166542849X&rft_dat=%3Cieee_CHZPO%3E9622527%3C/ieee_CHZPO%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-i118t-8eab342b140e5066d374954140d76cf1960e47f50dc0bfb2ce39d269a18abc6a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rft_ieee_id=9622527&rfr_iscdi=true